Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069008

RESUMO

The topography and composition of dental implant surfaces directly impact mesenchymal cell adhesion, proliferation, and differentiation, crucial aspects of achieving osseointegration. However, cell adhesion to biomaterials is considered a key step that drives cell proliferation and differentiation. The aim of this study was to characterize characterize the topography and composition of commercial titanium dental implants manufactured with different surface treatments (two sandblasted/acid-etched (SLA) (INNO Implants, Busan, Republic of Korea; BioHorizonsTM, Oceanside, CA, USA) and two calcium phosphate (CaP) treated (Biounite®, Berazategui, Argentina; Zimmer Biomet, Inc., Warsaw, IN, USA)) and to investigate their influence on the process of cell adhesion in vitro. A smooth surface implant (Zimmer Biomet, Inc.) was used as a control. For that, high-resolution methodologies such as scanning electron microscopy (SEM), X-ray dispersive spectroscopy (EDX), laser scanning confocal microscopy (LSCM), and atomic force microscopy (AFM) were employed. Protein adsorption and retromolar gingival mesenchymal stem cells (GMSCs) adhesion to the implant surfaces were evaluated after 48 h. The adherent cells were examined by SEM and LSCM for morphologic and quantitative analyses. ANOVA and Tukey tests (α = 0.05) were employed to determine statistical significance. SEM revealed that INNO, BioHorizonsTM, and Zimmer implants have an irregular surface, whereas Biounite® has a regular topography consisting of an ordered pattern. EDX confirmed a calcium and phosphate layer on the Biounite® and Zimmer surfaces, and AFM exhibited different roughness parameters. Protein adsorption and cell adhesion were detected on all the implant surfaces studied. However, the Biounite® implant with CaP and regular topography showed the highest protein adsorption capacity and density of adherent GMSCs. Although the Zimmer implant also had a CaP treatment, protein and cell adhesion levels were lower than those observed with Biounite®. Our findings indicated that the surface regularity of the implants is a more determinant factor in the cell adhesion process than the CaP treatment. A regular, nanostructured, hydrophilic, and moderately rough topography generates a higher protein adsorption capacity and thus promotes more efficient cell adhesion.


Assuntos
Implantes Dentários , Humanos , Titânio/farmacologia , Titânio/química , Adesão Celular , Gengiva , Cimetidina , Osseointegração , Microscopia Eletrônica de Varredura , Propriedades de Superfície
2.
BMC Oral Health ; 22(1): 579, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494635

RESUMO

BACKGROUND: Electrolyzed water has brought recent attention due to its antimicrobial properties. Indeed, electrolyzed water has been proposed to sterilize dental materials and instruments without compromising their structural integrity. In addition, electrolyzed water has been proposed as a mouthwash to control bacterial and viral oral infections without detrimental effects on the oral mucosa. However, no current consensus or evidence synthesis could indicate its potentially favorable use in the dental setting, particularly during the COVID-19 context. Therefore, this systematic review aimed to elucidate whether electrolyzed water could improve microbiologic control in the COVID-19 pandemic dental setting. METHODS: MEDLINE via Pubmed, EMBASE, Cochrane's CENTRAL, Scopus, LILACS, and Web of Science databases were searched up to September 2021 to identify experimental studies utilizing electrolyzed water for eliminating microorganisms in a dental setting. Besides, a manual and a grey literature search were performed. The data selection and extraction were performed individually and in duplicate. The Risk of Bias (RoB) was assessed with the Nature Publication Quality Improvement Project (NPQIP) score sheet. The study protocol was registered at PROSPERO CRD42020206986. RESULTS: From a total of 299 articles, 63 studies met the inclusion criteria. The included studies assessed several types of electrolyzed waters, which showed a high disinfection potential when used to deal with different oral conditions. Electrolyzed water demonstrated a broad antimicrobial spectrum and was highly efficient in the dental office disinfection against viruses, fungi, and bacteria, being compatible with most dental materials. In addition, electrolyzed water could protect against SARS-CoV-2 infection and contamination in the dental office. Regarding the RoB, only 35.18% of entries were answered as 'Yes', thus achieving less than half of the reporting sheet. CONCLUSION: Electrolyzed water effectively disinfects contaminated surfaces, dental materials, and equipment. Therefore, their use is recommendable in the SARS-CoV-2 pandemic dental setting.


Assuntos
COVID-19 , Pandemias , Humanos , Pandemias/prevenção & controle , SARS-CoV-2 , Água , COVID-19/prevenção & controle , Bactérias , Materiais Dentários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA