Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Trends Immunol ; 44(12): 933-935, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37949785

RESUMO

Immunotherapies have thus far led to disappointing outcomes in patients suffering from glioblastoma. Published in Immunity, Chen et al.'s recent study shows the therapeutic potential of an αCTLA-4 antibody (Ab), specifically in murine mesenchymal-like glioblastoma. αCTLA-4 Ab efficacy relied on the distinctive cooperation between CD4+ Th1 T cells and microglia, unleashing a potent antitumor response.


Assuntos
Glioblastoma , Humanos , Camundongos , Animais , Antígeno CTLA-4 , Imunidade Adaptativa , Anticorpos , Imunoterapia , Imunidade Inata
2.
Nature ; 621(7980): 849-856, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37730993

RESUMO

Protective immunity against pathogens or cancer is mediated by the activation and clonal expansion of antigen-specific naive T cells into effector T cells. To sustain their rapid proliferation and effector functions, naive T cells switch their quiescent metabolism to an anabolic metabolism through increased levels of aerobic glycolysis, but also through mitochondrial metabolism and oxidative phosphorylation, generating energy and signalling molecules1-3. However, how that metabolic rewiring drives and defines the differentiation of T cells remains unclear. Here we show that proliferating effector CD8+ T cells reductively carboxylate glutamine through the mitochondrial enzyme isocitrate dehydrogenase 2 (IDH2). Notably, deletion of the gene encoding IDH2 does not impair the proliferation of T cells nor their effector function, but promotes the differentiation of memory CD8+ T cells. Accordingly, inhibiting IDH2 during ex vivo manufacturing of chimeric antigen receptor (CAR) T cells induces features of memory T cells and enhances antitumour activity in melanoma, leukaemia and multiple myeloma. Mechanistically, inhibition of IDH2 activates compensating metabolic pathways that cause a disequilibrium in metabolites regulating histone-modifying enzymes, and this maintains chromatin accessibility at genes that are required for the differentiation of memory T cells. These findings show that reductive carboxylation in CD8+ T cells is dispensable for their effector response and proliferation, but that it mainly produces a pattern of metabolites that epigenetically locks CD8+ T cells into a terminal effector differentiation program. Blocking this metabolic route allows the increased formation of memory T cells, which could be exploited to optimize the therapeutic efficacy of CAR T cells.


Assuntos
Linfócitos T CD8-Positivos , Ativação Linfocitária , Diferenciação Celular/genética , Ciclo do Ácido Cítrico , Fosforilação Oxidativa , Memória Imunológica/genética
3.
Nat Commun ; 14(1): 2875, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208363

RESUMO

Engineering protein biosensors that sensitively respond to specific biomolecules by triggering precise cellular responses is a major goal of diagnostics and synthetic cell biology. Previous biosensor designs have largely relied on binding structurally well-defined molecules. In contrast, approaches that couple the sensing of flexible compounds to intended cellular responses would greatly expand potential biosensor applications. Here, to address these challenges, we develop a computational strategy for designing signaling complexes between conformationally dynamic proteins and peptides. To demonstrate the power of the approach, we create ultrasensitive chemotactic receptor-peptide pairs capable of eliciting potent signaling responses and strong chemotaxis in primary human T cells. Unlike traditional approaches that engineer static binding complexes, our dynamic structure design strategy optimizes contacts with multiple binding and allosteric sites accessible through dynamic conformational ensembles to achieve strongly enhanced signaling efficacy and potency. Our study suggests that a conformationally adaptable binding interface coupled to a robust allosteric transmission region is a key evolutionary determinant of peptidergic GPCR signaling systems. The approach lays a foundation for designing peptide-sensing receptors and signaling peptide ligands for basic and therapeutic applications.


Assuntos
Quimiotaxia , Peptídeos , Humanos , Quimiotaxia/fisiologia , Transdução de Sinais , Proteínas , Sítio Alostérico , Ligantes
4.
J Immunother Cancer ; 10(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36323436

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapy targeting B cell maturation antigen (BCMA) on multiple myeloma (MM) produces fast but not long-lasting responses. Reasons for treatment failure are poorly understood. CARs simultaneously targeting two antigens may represent an alternative. Here, we (1) designed and characterized novel A proliferation inducing ligand (APRIL) based dual-antigen targeting CARs, and (2) investigated mechanisms of resistance to CAR T cells with three different BCMA-binding moieties (APRIL, single-chain-variable-fragment, heavy-chain-only). METHODS: Three new APRIL-CARs were designed and characterized. Human APRIL-CAR T cells were evaluated for their cytotoxic function in vitro and in vivo, for their polyfunctionality, immune synapse formation, memory, exhaustion phenotype and tonic signaling activity. To investigate resistance mechanisms, we analyzed BCMA levels and cellular localization and quantified CAR T cell-target cell interactions by live microscopy. Impact on pathway activation and tumor cell proliferation was assessed in vitro and in vivo. RESULTS: APRIL-CAR T cells in a trimeric ligand binding conformation conferred fast but not sustained antitumor responses in vivo in mouse xenograft models. In vitro trimer-BBζ CAR T cells were more polyfunctional and formed stronger immune synapses than monomer-BBζ CAR T cells. After CAR T cell-myeloma cell contact, BCMA was rapidly downmodulated on target cells with all evaluated binding moieties. CAR T cells acquired BCMA by trogocytosis, and BCMA on MM cells was rapidly internalized. Since BCMA can be re-expressed during progression and persisting CAR T cells may not protect patients from relapse, we investigated whether non-functional CAR T cells play a role in tumor progression. While CAR T cell-MM cell interactions activated BCMA pathway, we did not find enhanced tumor growth in vitro or in vivo. CONCLUSION: Antitumor responses with APRIL-CAR T cells were fast but not sustained. Rapid BCMA downmodulation occurred independently of whether an APRIL or antibody-based binding moiety was used. BCMA internalization mostly contributed to this effect, but trogocytosis by CAR T cells was also observed. Our study sheds light on the mechanisms underlying CAR T cell failure in MM when targeting BCMA and can inform the development of improved treatment strategies.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Camundongos , Animais , Humanos , Antígeno de Maturação de Linfócitos B/genética , Antígeno de Maturação de Linfócitos B/metabolismo , Ligantes , Trogocitose , Recidiva Local de Neoplasia/metabolismo , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA