Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 452(7183): 88-92, 2008 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-18322534

RESUMO

Mycorrhizal symbioses--the union of roots and soil fungi--are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants. Boreal, temperate and montane forests all depend on ectomycorrhizae. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains approximately 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles that are fundamental to sustainable plant productivity.


Assuntos
Basidiomycota/genética , Basidiomycota/fisiologia , Genoma Fúngico/genética , Micorrizas/genética , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Simbiose/fisiologia , Abies/microbiologia , Abies/fisiologia , Basidiomycota/enzimologia , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica , Genes Fúngicos/genética , Hifas/genética , Hifas/metabolismo , Micorrizas/enzimologia , Raízes de Plantas/fisiologia , Simbiose/genética
2.
Biochimie ; 89(12): 1454-63, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17949885

RESUMO

Distributions of phylogenetically related protein domains (fold superfamilies), or FSFs, among the three Superkingdoms (trichotomy) are assessed. Very nearly 900 of the 1200 FSFs of the trichotomy are shared by two or three Superkingdoms. Parsimony analysis of FSF distributions suggests that the FSF complement of the last common ancestor to the trichotomy was more like that of modern eukaryotes than that of archaea and bacteria. Studies of length distributions among members of orthologous families of proteins present in all three Superkingdoms reveal that such lengths are significantly longer among eukaryotes than among bacteria and archaea. The data also reveal that proteins lengths of eukaryotes are more broadly distributed than they are within archaeal and bacterial members of the same orthologous families. Accordingly, selective pressure for a minimal size is significantly greater for orthologous protein lengths in archaea and bacteria than in eukaryotes. Alignments of orthologous proteins of archaea, bacteria and eukaryotes are characterized by greater sequence variation at their N-terminal and C-terminal domains, than in their central cores. Length variations tend to be localized in the terminal sequences; the conserved sequences of orthologous families are localized in a central core. These data are consistent with the interpretation that the genomes of the last common ancestor (LUCA) encoded a cohort of FSFs not very different from that of modern eukaryotes. Divergence of bacterial and archaeal genomes from that common ancestor may have been accompanied by more intensive reductive evolution of proteomes than that expressed in eukaryotes. Dollo's Law suggests that the evolution of novel FSFs is a very slow process, while laboratory experiments suggests that novel protein genesis from preexisting FSFs can be relatively rapid. Reassortment of FSFs to create novel proteins may have been mediated by genetic recombination before the advent of more efficient splicing mechanisms.


Assuntos
Evolução Molecular , Proteoma , Sequência de Aminoácidos , Archaea/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biologia Computacional , Bases de Dados de Proteínas , Células Eucarióticas/química , Genes Arqueais , Genes Bacterianos , Genoma , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Proteínas , Proteômica , Homologia de Sequência de Aminoácidos
3.
Mol Ecol ; 16(4): 867-80, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17284217

RESUMO

Because of their small size, great abundance and easy dispersal, it is often assumed that marine planktonic microorganisms have a ubiquitous distribution that prevents any structured assembly into local communities. To challenge this view, marine bacterioplankton communities from coastal waters at nine locations distributed world-wide were examined through the use of comprehensive clone libraries of 16S ribosomal RNA genes, used as operational taxonomic units (OTU). Our survey and analyses show that there were marked differences in the composition and richness of OTUs between locations. Remarkably, the global marine bacterioplankton community showed a high degree of endemism, and conversely included few cosmopolitan OTUs. Our data were consistent with a latitudinal gradient of OTU richness. We observed a positive relationship between the relative OTU abundances and their range of occupation, i.e. cosmopolitans had the largest population sizes. Although OTU richness differed among locations, the distributions of the major taxonomic groups represented in the communities were analogous, and all local communities were similarly structured and dominated by a few OTUs showing variable taxonomic affiliations. The observed patterns of OTU richness indicate that similar evolutionary and ecological processes structured the communities. We conclude that marine bacterioplankton share many of the biogeographical and macroecological features of macroscopic organisms. The general processes behind those patterns are likely to be comparable across taxa and major global biomes.


Assuntos
Bactérias/genética , Demografia , Ecossistema , Variação Genética , Filogenia , Plâncton/genética , Bactérias/classificação , Sequência de Bases , Biologia Computacional , Primers do DNA , Biblioteca Gênica , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Oceanos e Mares , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
Proc Natl Acad Sci U S A ; 100(17): 9658-62, 2003 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-12902542

RESUMO

It has been suggested that horizontal gene transfer (HGT) is the "essence of phylogeny." In contrast, much data suggest that this is an exaggeration resulting in part from a reliance on inadequate methods to identify HGT events. In addition, the assumption that HGT is a ubiquitous influence throughout evolution is questionable. Instead, rampant global HGT is likely to have been relevant only to primitive genomes. In modern organisms we suggest that both the range and frequencies of HGT are constrained most often by selective barriers. As a consequence those HGT events that do occur most often have little influence on genome phylogeny. Although HGT does occur with important evolutionary consequences, classical Darwinian lineages seem to be the dominant mode of evolution for modern organisms.


Assuntos
Evolução Biológica , Transferência Genética Horizontal , Modelos Genéticos , Animais , Archaea/genética , Bactérias/genética , Genoma , Humanos , Filogenia , RNA Ribossômico/genética
5.
Proc Natl Acad Sci U S A ; 99(9): 6097-102, 2002 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-11983902

RESUMO

Genes encoding the glycolytic enzymes of the facultative endocellular parasite Bartonella henselae have been analyzed phylogenetically within a very large cohort of homologues from bacteria and eukaryotes. We focus on this relative of Rickettsia prowazekii along with homologues from other alpha-proteobacteria to determine whether there have been systematic transfers of glycolytic genes from the presumed alpha-proteobacterial ancestor of the mitochondrion to the nucleus of the early eukaryote. The alpha-proteobacterial homologues representing the eight glycolytic enzymes studied here tend to cluster in well-supported nodes. Nevertheless, not one of these alpha-proteobacterial enzymes is related as a sister clade to the corresponding eukaryotic homologues. Nor is there a close phylogenetic relationship between glycolytic genes from Eucarya and any other bacterial phylum. In contrast, several of the reconstructions suggest that there may have been systematic transfer of sequences encoding glycolytic enzymes from cyanobacteria to some green plants. Otherwise, surprisingly little exchange between the bacterial and eukaryotic domains is observed. The descent of eukaryotic genes encoding enzymes of intermediary metabolism is reevaluated.


Assuntos
Enzimas/química , Glicólise , Animais , Bartonella henselae/enzimologia , Biologia Computacional , Bases de Dados como Assunto , Glucosefosfato Desidrogenase/genética , Dados de Sequência Molecular , Família Multigênica , Fosfopiruvato Hidratase/genética , Filogenia , Software , Triose-Fosfato Isomerase/genética
6.
Yeast ; 17(3): 170-87, 2000 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-11025528

RESUMO

We propose a scheme for the origin of mitochondria based on phylogenetic reconstructions with more than 400 yeast nuclear genes that encode mitochondrial proteins. Half of the yeast mitochondrial proteins have no discernable bacterial homologues, while one-tenth are unequivocally of alpha-proteobacterial origin. These data suggest that the majority of genes encoding yeast mitochondrial proteins are descendants of two different genomic lineages that have evolved in different modes. First, the ancestral free-living alpha-proteobacterium evolved into an endosymbiont of an anaerobic host. Most of the ancestral bacterial genes were lost, but a small fraction of genes supporting bioenergetic and translational processes were retained and eventually transferred to what became the host nuclear genome. In a second, parallel mode, a larger number of novel mitochondrial genes were recruited from the nuclear genome to complement the remaining genes from the bacterial ancestor. These eukaryotic genes, which are primarily involved in transport and regulatory functions, transformed the endosymbiont into an ATP-exporting organelle.


Assuntos
Evolução Molecular , Proteínas Fúngicas/genética , Mitocôndrias/genética , Proteoma/genética , Saccharomyces cerevisiae/genética , Alphaproteobacteria/química , Alphaproteobacteria/genética , Bases de Dados Factuais , Proteínas Fúngicas/química , Humanos , Mitocôndrias/química , Filogenia , Rickettsia prowazekii/química , Rickettsia prowazekii/genética , Saccharomyces cerevisiae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA