Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Hum Genet ; 142(8): 1303-1315, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37368047

RESUMO

Hereditary spastic paraplegias (HSPs) are a group of neurodegenerative disorders characterized by progressive dysfunction of corticospinal motor neurons. Mutations in Atlastin1/Spg3, a small GTPase required for membrane fusion in the endoplasmic reticulum, are responsible for 10% of HSPs. Patients with the same Atlastin1/Spg3 mutation present high variability in age at onset and severity, suggesting a fundamental role of the environment and genetic background. Here, we used a Drosophila model of HSPs to identify genetic modifiers of decreased locomotion associated with atlastin knockdown in motor neurons. First, we screened for genomic regions that modify the climbing performance or viability of flies expressing atl RNAi in motor neurons. We tested 364 deficiencies spanning chromosomes two and three and found 35 enhancer and four suppressor regions of the climbing phenotype. We found that candidate genomic regions can also rescue atlastin effects at synapse morphology, suggesting a role in developing or maintaining the neuromuscular junction. Motor neuron-specific knockdown of 84 genes spanning candidate regions of the second chromosome identified 48 genes required for climbing behavior in motor neurons and 7 for viability, mapping to 11 modifier regions. We found that atl interacts genetically with Su(z)2, a component of the Polycomb repressive complex 1, suggesting that epigenetic regulation plays a role in the variability of HSP-like phenotypes caused by atl alleles. Our results identify new candidate genes and epigenetic regulation as a mechanism modifying neuronal atl pathogenic phenotypes, providing new targets for clinical studies.


Assuntos
Drosophila , Paraplegia Espástica Hereditária , Animais , Proteínas de Membrana/genética , Paraplegia Espástica Hereditária/genética , Epigênese Genética , Mutação
2.
Sleep ; 46(4)2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36718043

RESUMO

The mechanisms by which the genotype interacts with nutrition during development to contribute to the variation of complex behaviors and brain morphology of adults are not well understood. Here we use the Drosophila Genetic Reference Panel to identify genes and pathways underlying these interactions in sleep behavior and mushroom body morphology. We show that early-life nutritional restriction effects on sleep behavior and brain morphology depends on the genotype. We mapped genes associated with sleep sensitivity to early-life nutrition, which were enriched for protein-protein interactions responsible for translation, endocytosis regulation, ubiquitination, lipid metabolism, and neural development. By manipulating the expression of candidate genes in the mushroom bodies (MBs) and all neurons, we confirm that genes regulating neural development, translation and insulin signaling contribute to the variable response of sleep and brain morphology to early-life nutrition. We show that the interaction between differential expression of candidate genes with nutritional restriction in early life resides in the MBs or other neurons and that these effects are sex-specific. Natural variations in genes that control the systemic response to nutrition and brain development and function interact with early-life nutrition in different types of neurons to contribute to the variation of brain morphology and adult sleep behavior.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Masculino , Feminino , Drosophila melanogaster/genética , Drosophila/genética , Encéfalo/fisiologia , Sono/fisiologia , Genes Controladores do Desenvolvimento
3.
Front Cell Dev Biol ; 10: 874362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982851

RESUMO

Cell segregation mechanisms play essential roles during the development of the central nervous system (CNS) to support its organization into distinct compartments. The Slit protein is a secreted signal, classically considered a paracrine repellent for axonal growth through Robo receptors. However, its function in the compartmentalization of CNS is less explored. In this work, we show that Slit and Robo3 are expressed in the same neuronal population of the Drosophila optic lobe, where they are required for the correct compartmentalization of optic lobe neuropils by the action of an autocrine/paracrine mechanism. We characterize the endocytic route followed by the Slit/Robo3 complex and detected genetic interactions with genes involved in endocytosis and actin dynamics. Thus, we report that the Slit-Robo3 pathway regulates the morphogenesis of the optic lobe through an atypical autocrine/paracrine mechanism in addition to its role in axon guidance, and in association with proteins of the endocytic pathway and small GTPases.

4.
Dev Neurobiol ; 75(9): 1018-32, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25652545

RESUMO

During axon targeting, a stereotyped pattern of connectivity is achieved by the integration of intrinsic genetic programs and the response to extrinsic long and short-range directional cues. How this coordination occurs is the subject of intense study. Transcription factors play a central role due to their ability to regulate the expression of multiple genes required to sense and respond to these cues during development. Here we show that the transcription factor HNT regulates layer-specific photoreceptor axon targeting in Drosophila through transcriptional control of jbug/Filamin and multiple genes involved in axon guidance and cytoskeleton organization.Using a microarray analysis we identified 235 genes whose expression levels were changed by HNT overexpression in the eye primordia. We analyzed nine candidate genes involved in cytoskeleton regulation and axon guidance, six of which displayed significantly altered gene expression levels in hnt mutant retinas. Functional analysis confirmed the role of OTK/PTK7 in photoreceptor axon targeting and uncovered Tiggrin, an integrin ligand, and Jbug/Filamin, a conserved actin- binding protein, as new factors that participate of photoreceptor axon targeting. Moreover, we provided in silico and molecular evidence that supports jbug/Filamin as a direct transcriptional target of HNT and that HNT acts partially through Jbug/Filamin in vivo to regulate axon guidance. Our work broadens the understanding of how HNT regulates the coordinated expression of a group of genes to achieve the correct connectivity pattern in the Drosophila visual system. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1018-1032, 2015.


Assuntos
Axônios/fisiologia , Movimento Celular/fisiologia , Proteínas de Drosophila/metabolismo , Filaminas/metabolismo , Proteínas Nucleares/metabolismo , Células Fotorreceptoras de Invertebrados/fisiologia , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular , Citoesqueleto/metabolismo , Drosophila , Proteínas da Matriz Extracelular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Retina/crescimento & desenvolvimento , Retina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA