Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Parasitol ; 100: 209-237, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29753339

RESUMO

In this era of increasing demand for sensitive techniques to diagnose schistosomiasis, there is a need for an increased focus on the properties of the parasite eggs. The eggs are not only directly linked to the morbidity of chronic infection but are also potential key targets for accurate diagnostics. Eggs were the primary target of diagnostic tools in the past and we argue they could be the target of highly sensitive tools in the future if we focus on characteristics of their structure and shell surface that could be exploited for enhanced detection. In this review, we discuss the current state of knowledge of the physical structures of schistosome eggs and eggshells with a view to identifying pathways to a comprehensive understanding of their role in the host-parasite relationship and pathogenesis of infection, and pathways to new strategies for development of diagnostics.


Assuntos
Interações Hospedeiro-Parasita , Óvulo/química , Óvulo/citologia , Esquistossomose/diagnóstico , Esquistossomose/parasitologia , Humanos
2.
Trends Parasitol ; 34(4): 267-271, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29422443

RESUMO

To date, reliable techniques that can provide accurate information on the local and global prevalence of schistosomiasis are still associated with high costs or labour-intensive processes. Here we discuss old and new concepts for diagnostic approaches, and we highlight structural properties of schistosome eggshells that result in their affinity for magnetic materials as a new diagnostic approach.


Assuntos
Magnetismo , Parasitologia/métodos , Schistosoma/química , Esquistossomose/diagnóstico , Animais , Técnicas e Procedimentos Diagnósticos/tendências , Humanos , Óvulo/química
3.
Int J Parasitol ; 45(1): 43-50, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25305086

RESUMO

Schistosomiasis is a chronic parasitic disease of humans, with two species primarily causing the intestinal infection: Schistosoma mansoni and Schistosoma japonicum. Traditionally, diagnosis of schistosomiasis is achieved through direct visualisation of eggs in faeces using techniques that lack the sensitivity required to detect all infections, especially in areas of low endemicity. A recently developed method termed Helmintex™ is a very sensitive technique for detection of Schistosoma eggs and exhibits 100% sensitivity at 1.3 eggs per gram of faeces, enough to detect even low-level infections. The Helminthex™ method is based on the interaction of magnetic microspheres and schistosome eggs. Further understanding the underlying egg-microsphere interactions would enable a targeted optimisation of egg-particle binding and may thus enable a significant improvement of the Helmintex™ method and diagnostic sensitivity in areas with low infection rates. We investigated the magnetic properties of S. mansoni and S. japonicum eggs and their interactions with microspheres with different magnetic properties and surface functionalization. Eggs of both species exhibited higher binding affinity to the magnetic microspheres than the non-magnetic microspheres. Binding efficiency was further enhanced if the particles were coated with streptavidin. Schistosoma japonicum eggs bound more microspheres compared with S. mansoni. However, distinct differences within eggs of each species were also observed when the distribution of the number of microspheres bound per egg was modelled with double Poisson distributions. Using this approach, both S. japonicum and S. mansoni eggs fell into two groups, one having greater affinity for magnetic microspheres than the other, indicating that not all eggs of a species exhibit the same binding affinity. Our observations suggest that interaction between the microspheres and eggs is more likely to be related to surface charge-based electrostatic interactions between eggs and magnetic iron oxide rather than through a direct magnetic interaction.


Assuntos
Adsorção , Magnetismo , Microesferas , Schistosoma japonicum/metabolismo , Schistosoma mansoni/metabolismo , Coloração e Rotulagem , Animais , Testes Diagnósticos de Rotina , Humanos , Camundongos , Esquistossomose/diagnóstico , Eletricidade Estática , Zigoto/metabolismo
4.
PLoS Negl Trop Dis ; 7(5): e2219, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23696910

RESUMO

BACKGROUND: Schistosoma mansoni and Schistosoma japonicum are the most frequent causative agents of human intestinal schistosomiasis. Approximately 200 million people in the world are infected with schistosomes. Diagnosis of schistosomiasis is often difficult. High percentages of low level infections are missed in routine fecal smear analysis and current diagnostic methodologies are inadequate to monitor the progress of parasite control, especially in areas with low transmission. Improved diagnostic methods are urgently needed to evaluate the success of elimination programs. Recently, a magnetic fractionation method for isolation of parasite eggs from feces was described, which uses magnetic microspheres to form parasite egg - magnetic microsphere conjugates. This approach enables screening of larger sample volumes and thus increased diagnostic sensitivity. The mechanism of formation of the conjugates remains unexplained and may either be related to specific surface characteristics of eggs and microspheres or to their magnetic properties. METHODS/PRINCIPAL FINDINGS: Here, we investigated iron localization in parasite eggs, specifically in the eggshells. We determined the magnetic properties of the eggs, studied the motion of eggs and egg-microsphere conjugates in magnetic fields and determined species specific affinity of parasite eggs to magnetic microspheres. Our study shows that iron is predominantly localized in pores in the eggshell. Parasite eggs showed distinct paramagnetic behaviour but they did not move in a magnetic field. Magnetic microspheres spontaneously bound to parasite eggs without the presence of a magnetic field. S. japonicum eggs had a significantly higher affinity to bind microspheres than S. mansoni eggs. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the interaction of magnetic microspheres and parasite eggs is unlikely to be magnetic in origin. Instead, the filamentous surface of the eggshells may be important in facilitating the binding. Modification of microsphere surface properties may therefore be a way to optimize magnetic fractionation of parasite eggs.


Assuntos
Ferro/análise , Magnetismo , Schistosoma japonicum/química , Schistosoma mansoni/química , Zigoto/química , Animais , Técnicas de Laboratório Clínico/métodos , Camundongos , Microesferas , Parasitologia , Schistosoma japonicum/isolamento & purificação , Schistosoma mansoni/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA