Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Gen Physiol Biophys ; 42(2): 201-208, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36896949

RESUMO

Toxic doses of paracetamol are also known to be close to therapeutic doses. This study aimed to biochemically investigate the protective effect of ATP against paracetamol-induced oxidative liver injury in rats and to examine the tissues histopathologically. We divided the animals into the paracetamol alone (PCT), ATP + paracetamol (PATP), and healthy control (HG) groups. Liver tissues were examined biochemically and histopathologically. Malondialdehyde level, AST and ALT activity in the PCT group were significantly higher than those in the HG and PATP groups (p < 0.001). The glutathione (tGSH) level, superoxide dismutase (SOD) and catalase (CAT) activity in the PCT group was significantly lower than that in the HG and PATP groups (p < 0.001), while animal SOD activity was significantly different between the PATP and HG groups (p < 0.001). The activity of CAT was almost the same. In the group treated with paracetamol alone, lipid deposition, necrosis, fibrosis, and grade 3 hydropic degeneration were observed. No histopathological damage was observed of the ATP-treated group, except for grade 2 edema. We discovered that ATP reduces the oxidative stress caused by paracetamol ingestion and protects against paracetamol-induced liver injury at the macroscopic and histological levels.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Ratos , Animais , Acetaminofen/toxicidade , Acetaminofen/metabolismo , Trifosfato de Adenosina/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado , Antioxidantes/farmacologia , Estresse Oxidativo
2.
Gen Physiol Biophys ; 42(1): 67-75, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36705306

RESUMO

The primary sources of reactive oxygen species (ROS) that cause ischemia-reperfusion (I/R) injuries are enzymes xanthine oxidase (XO) and nicotinamide adenine dinucleotide phosphate oxidases (NOXs) in the literature, whereby one of the main ROS producing cells via NOX activity are polymophonuclear leukocytes (PNL). Sugammadex, the effect of which we plan to research against gastric I/R damage, is a modified gamma-cyclodextrin that antagonizes the action of steroidal neuromuscular blocking drugs. Previous studies have reported that sugammadex inhibits PNL infiltration. However, it is unknown whether an inhibitory effect on XO is present. We aimed to biochemically and histopathologically investigate the effects of sugammadex on I/R-induced stomach damage in rats. The animals were divided into groups that underwent gastric ischemia-reperfusion (GIR), 4 mg/kg sugammadex + gastric ischemia-reperfusion (SGIR), and a sham operation group (SG). The effect of sugammadex was evaluated by measuring oxidant-antioxidant and PNL parameters. There was no significant difference in XO levels between the SGIR and GIR groups. In the SGIR group, sugammadex inhibited the increase in myeloperoxidase (MPO) and malondialdehyde (MDA) levels (p < 0.001). The amount of MDA and MPO in the SGIR group was similar as in the SG group. Sugammadex significantly suppressed the decrease in tGSH levels in the SGIR group (p < 0.001). The difference between tGSH levels in the SG and SGIR groups was slight. In the SGIR group, sugammadex significantly suppressed the increase in tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL1-ß) levels compared to the GIR group (p < 0.001). Additionally, sugammadex corrected histopathological modifications as much as sham group. In conclusion, sugammadex may be beneficial in preventing oxidative stress.


Assuntos
Traumatismo por Reperfusão , Ratos , Animais , Sugammadex/farmacologia , Ratos Wistar , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão/tratamento farmacológico , Isquemia , Estômago/patologia , Malondialdeído , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA