Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Sci Total Environ ; 912: 168955, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056642

RESUMO

Mangrove ecosystems are an important blue carbon store but exhibit considerable variation in soil carbon stocks globally. Unravelling the conditions controlling carbon stock is critical for assessing current and future carbon budgets. Mangrove soil biogeochemical cycles can strongly influence carbon storage capacities. We thus investigated carbon sequestration and the environmental parameters shaping variability in biogeochemical cycling and carbon storage in sediment samples from four mangrove sites along an estuarine-to-marine gradient in Hong Kong, a megacity. Our results showed that organic matter in Hong Kong mangroves is sourced principally from autochthonous mangrove plants. Total nitrogen was higher in the freshwater-influenced sites and supplied from different sources. Marine-influenced sites had larger sulfur fractionations, reflecting higher marine-sourced sulfate concentrations and indicating a relatively open sulfate system. We estimated an average organic carbon stock of 115 ± 8 Mg C ha-1 in the upper 100 cm soil layer placing Hong Kong mangroves at the lower end of the global spectrum of the soil carbon stock. Carbon accumulation was found to be driven by a combination of higher total organic matter inputs, soil fluxes, and porosity. Notably, despite having the highest mass-specific soil organic carbon contents, Mai Po had the lowest integrated soil organic carbon storage (77 ± 3 Mg C ha-1). This was primarily due to lower sediment density and higher tidal pumping leading to a decrease in carbon retention. Total organic matter input, sediment characteristics, and hydrodynamics were the main factors influencing soil organic carbon storage. Overall, our results suggest that (1) while multiple parameters can enhance soil organic carbon content and increase carbon storage capacities, (2) hydrodynamics and sediment characteristics can increase the potential for leakage of carbon, and (3) high carbon content does not always equal high carbon sequestration and stock.

2.
BMC Ecol Evol ; 23(1): 69, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053023

RESUMO

BACKGROUND: Evidence of correlation between genome size, the nuclear haploid DNA content of a cell, environmental factors and life-history traits have been reported in many animal species. Genome size, however, spans over three orders of magnitude across taxa and such a correlation does not seem to follow a universal pattern. In squamate reptiles, the second most species-rich order of vertebrates, there are currently no studies investigating drivers of genome size variability. We run a series of phylogenetic generalized least-squares models on 227 species of squamates to test for possible relationships between genome size and ecological factors including latitudinal distribution, bioclimatic variables and microhabitat use. We also tested whether genome size variation can be associated with parity mode, a highly variable life history trait in this order of reptiles. RESULTS: The best-fitting model showed that the interaction between microhabitat use and parity mode mainly accounted for genome size variation. Larger genome sizes were found in live-bearing species that live in rock/sand ecosystems and in egg-laying arboreal taxa. On the other hand, smaller genomes were found in fossorial live-bearing species. CONCLUSIONS: Environmental factors and species parity mode appear to be among the main parameters explaining genome size variation in squamates. Our results suggest that genome size may favour adaptation of some species to certain environments or could otherwise result from the interaction between environmental factors and parity mode. Integration of genome size and genome sequencing data could help understand the role of differential genome content in the evolutionary process of genome size variation in squamates.


Assuntos
Lagartos , Animais , Filogenia , Tamanho do Genoma , Lagartos/genética , Serpentes/genética , Ecossistema , Viviparidade não Mamífera/genética , Oviparidade
3.
Sci Rep ; 13(1): 21033, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030652

RESUMO

Transitions to physically different environments, such as the water-to-land transition, proved to be the main drivers of relevant evolutionary events. Brachyuran crabs evolved remarkable morphological, behavioral, and physiological adaptations to terrestrial life. Terrestrial species evolved new respiratory structures devoted to replace or support the gills, a multifunctional organ devoted to gas exchanges, ion-regulation and nitrogen excretion. It was hypothesized that microorganisms associated with respiratory apparatus could have facilitated the processes of osmoregulation, respiration, and elimination of metabolites along this evolutionary transition. To test if crab species with different breathing adaptations may host similar microbial communities on their gills, we performed a comparative targeted-metagenomic analysis, selecting two marine and six terrestrial crabs belonging to different families and characterised by different breathing adaptations. We analysed anterior and posterior gills separately according to their different and specific roles. Regardless of their terrestrial or marine adaptations, microbial assemblages were strongly species-specific indicating a non-random association between the host and its microbiome. Significant differences were found in only two terrestrial species when considering posterior vs. anterior gills, without any association with species-specific respiratory adaptations. Our results suggest that all the selected species are strongly adapted to the ecological niche and specific micro-habitat they colonise.


Assuntos
Braquiúros , Microbiota , Humanos , Animais , Braquiúros/fisiologia , Brânquias/metabolismo , Respiração , Taxa Respiratória
4.
Biol Lett ; 19(11): 20230436, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37990566

RESUMO

The natural light cycle has profound effects on animals' cognitive systems. Its alteration owing to human activities, such as artificial light at night (ALAN), affects the biodiversity of mammalian and avian species by impairing their cognitive functions. The impact of ALAN on cognition, however, has not been investigated in aquatic species, in spite of the common occurrence of this pollution along water bodies. We exposed eggs of a teleost fish (the zebrafish Danio rerio) to ALAN and, upon hatching, we measured larvae' cognitive abilities with a habituation learning paradigm. Both control and ALAN-exposed larvae showed habituation learning, but the latter learned significantly slower, suggesting that under ALAN conditions, fish require many more events to acquire ecologically relevant information. We also found that individuals' learning performance significantly covaried with two behavioural traits in the control zebrafish, but ALAN disrupted one of these relationships. Additionally, ALAN resulted in an average increase in larval activity. Our results showed that both fish's cognitive abilities and related individual differences are negatively impacted by light pollution, even after a short exposure in the embryonic stage.


Assuntos
Luz , Peixe-Zebra , Animais , Humanos , Poluição Luminosa , Larva , Comportamento Animal , Mamíferos
5.
Mar Pollut Bull ; 195: 115495, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37708605

RESUMO

Excessive mismanaged debris along tropical coasts pose a threat to vulnerable mangrove ecosystems. Here, we examined the spatial, seasonal and environmental drivers of anthropogenic debris abundance and its potential ecological impact in peri-urban mangroves across Hong Kong. Seasonal surveys were conducted in both landward and seaward zones, with identification, along belt transects, of macrodebris (>5 mm) based on material type and use. Our results indicate spatial variability in debris abundance and distribution, with plastic being the predominant material type identified. Both plastic and non-plastic domestic items covered the most surface area. Debris aggregation was highest at the landward zones, consistent with the literature. In the dry season, more debris accumulated and covered greater surface area in both seaward and landward zones. These results confirm that land-derived debris from mismanaged waste, rather than debris coming from the Pearl River, is the primary source of anthropogenic debris pollution threatening Hong Kong's mangroves.


Assuntos
Ecossistema , Monitoramento Ambiental , Hong Kong , Estações do Ano , Monitoramento Ambiental/métodos , China , Poluição Ambiental , Resíduos/análise , Plásticos
6.
Sci Total Environ ; 903: 166271, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37586534

RESUMO

Brachyuran crabs are ecologically and economically important macrofauna in mangrove habitats. However, they are exposed to various contaminants, including plastics, which bioaccumulate in relation to their feeding modes. Setiu Wetlands is a unique place on the east coast of Peninsular Malaysia where different ecosystems such as mangroves, lagoon, beaches, etc., are duly connected and influencing each other. In recent years, the shifted river mouth has threatened these wetlands, causing severe hydrodynamic changes in the lagoon, especially in the core mangrove zone. The present study tested microplastics (MPs) contamination in the mangroves through brachyuran crabs as indicators. Three sampling sites, namely Pulau Layat, Kampung Pengkalan Gelap, and Pulau Sutung were chosen. The four abundant crab species Parasesarma eumolpe, Metaplax elegans, Austruca annulipes, and Scylla olivacea, which display different feeding behaviours were collected from all sites covering the dry (Feb-Mar 2021) and the wet (Dec 2021-Jan 2022) seasonal periods. There were significant differences in the seasonal abundance of MPs among crab species. The highest accumulation of MPs in the crab stomachs in the dry season could be linked to subdued water circulation and poor material dispersion. Besides the lower MPs in the wet period due to improved water exchange conditions, its significant presence in the stomachs of S. olivacea indicates the role of its feeding behaviour as a carnivore. In addition, the micro-Fourier transform infrared spectroscopy (micro-FTIR) revealed the widespread occurrence of polymers such as rayon and polyester in all species across the sites. Given the fact that crabs like S. olivacea are commercially important and the ones contaminated with MPs can cause detrimental effects on the local community's health, further managerial actions are needed to assure sustainable management of the Setiu Wetlands.

7.
Data Brief ; 49: 109420, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37501728

RESUMO

The present dataset provides information on the abundance of microplastics (MPs) in relation to different feeding habits of the four mangrove brachyuran crab species namely, Parasesarma eumolpe, Austruca annulipes, Metaplax elegans and Scylla olivacea at Setiu Wetlands in Peninsular Malaysia. Three sites namely, Pulau Layat (upstream, close to the core mangrove zone), Kampung Pengkalan Gelap (midstream, close to the settlements), and Pulau Sutung (downstream, close to the shifted river mouth) were chosen for the sample collection (through hand catch method and traps) in both the dry (Feb-Mar 2021) and the wet (Dec 2021 - Jan 2022) seasons. The cardiac stomach of each crab was dissected, digested in potassium hydroxide and then filtered through a 1.6 µm pore size glass fibre filter using the vacuum pump. The abundance, type and colour of MPs per crab individual were determined under a stereomicroscope (Carl Zeiss Stemi 508, China) attached to the digital camera (Axiocam 208 colour). The general abundance of MPs was found in the order of carnivorous S. olivacea > microphytobenthos feeder A. annulipes > herbivorous P. eumolpe > detritivorous M. elegans. The data also reveal morphometric measurements such as body weight, gut weight, carapace width and carapace length of the crab specimens. The information given in this article is useful for study replications and scientific comparisons, especially with brachyuran crabs and other organisms with similar feeding guilds, in the mangroves of Malaysia and elsewhere.

8.
Front Microbiol ; 14: 1113617, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37378290

RESUMO

Microorganisms are ubiquitous in the environment and provide genetic and physiological functions to multicellular organisms. Knowledge on the associated microbiota is becoming highly relevant to understand the host's ecology and biology. Among invertebrates, many examples of endosymbiosis have been described, such as those in corals, ants, and termites. At present, however, little is known on the presence, diversity, and putative roles of the microbiota associated to brachyuran crabs in relation to their environment. In this work we investigated the associated microbiota of three populations of the terrestrial brachyuran crab Chiromantes haematocheir to find evidence of a conserved organ-specific microbiome unrelated to the population of origin and dissimilar from environmental microbial assemblages. Bacterial 16S rRNA gene and fungal ITS sequences were obtained from selected crab organs and environmental matrices to profile microbial communities. Despite the presence of truly marine larval stages and the absence of a gregarious behaviour, favouring microbiota exchanges, we found common, organ-specific microbiota, associated with the gut and the gills of crabs from the different populations (with more than 15% of the genera detected specifically enriched only in one organ). These findings suggest the presence of possible functional roles of the organ-specific microbiota.

9.
Ecol Appl ; 33(4): e2852, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36946332

RESUMO

Climate change is already having profound effects on biodiversity, but climate change adaptation has yet to be fully incorporated into area-based management tools used to conserve biodiversity, such as protected areas. One main obstacle is the lack of consensus regarding how impacts of climate change can be included in spatial conservation plans. We propose a climate-smart framework that prioritizes the protection of climate refugia-areas of low climate exposure and high biodiversity retention-using climate metrics. We explore four aspects of climate-smart conservation planning: (1) climate model ensembles; (2) multiple emission scenarios; (3) climate metrics; and (4) approaches to identifying climate refugia. We illustrate this framework in the Western Pacific Ocean, but it is equally applicable to terrestrial systems. We found that all aspects of climate-smart conservation planning considered affected the configuration of spatial plans. The choice of climate metrics and approaches to identifying refugia have large effects in the resulting climate-smart spatial plans, whereas the choice of climate models and emission scenarios have smaller effects. As the configuration of spatial plans depended on climate metrics used, a spatial plan based on a single measure of climate change (e.g., warming) will not necessarily be robust against other measures of climate change (e.g., ocean acidification). We therefore recommend using climate metrics most relevant for the biodiversity and region considered based on a single or multiple climate drivers. To include the uncertainty associated with different climate futures, we recommend using multiple climate models (i.e., an ensemble) and emission scenarios. Finally, we show that the approaches we used to identify climate refugia feature trade-offs between: (1) the degree to which they are climate-smart, and (2) their efficiency in meeting conservation targets. Hence, the choice of approach will depend on the relative value that stakeholders place on climate adaptation. By using this framework, protected areas can be designed with improved longevity and thus safeguard biodiversity against current and future climate change. We hope that the proposed climate-smart framework helps transition conservation planning toward climate-smart approaches.


Assuntos
Conservação dos Recursos Naturais , Água do Mar , Conservação dos Recursos Naturais/métodos , Concentração de Íons de Hidrogênio , Biodiversidade , Incerteza , Mudança Climática , Ecossistema
10.
Chemosphere ; 312(Pt 1): 137129, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36356813

RESUMO

The establishment of marine protected areas is considered the main global strategy to halt the loss of marine biodiversity. Since most of marine areas are open systems, this form of habitat protection cannot prevent their contamination due to human activities performed outside of their borders. Innovative approaches to assess the health status of protected marine habitats are therefore needed. Here we developed a multidisciplinary approach that combines ecological characteristics, bioaccumulation of inorganic and organic pollutants, cell damage (micronuclei frequency, nuclear alterations and LPO) and enzymatic (AChE, CAT, IDH, LDH, GST and CAT) markers focused on an intertidal brachyuran crab, Pachygrapsus marmoratus, to assess the impacts of contaminant exposure on Mediterranean coastal habitats. As study sites we selected two protected areas and two sites within industrial ports of the Ligurian Sea. Our results showed that the selected crab species is an excellent bioindicator. Individuals collected in sites with the highest levels of heavy metal pollution showed the highest signals of stress responses at both cellular and enzymatic levels, coupled with a high incidence of the parasite Sacculina carcini, a signal of impairment of their standard development and reproduction cycle. We could also prove that one of the selected marine protected areas showed the same intensity of impact as its adjacent port site. Our multidisciplinary approach proved to be a valuable tool to assess the environmental quality and health of protected and disturbed Mediterranean coastal environments and to inform efficient management and protection schemes for such habitats.


Assuntos
Braquiúros , Humanos , Animais , Ecossistema , Biodiversidade , Poluição Ambiental , Biomarcadores Ambientais , Mar Mediterrâneo
12.
Environ Pollut ; 300: 118920, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131331

RESUMO

Plastic ingestion has been widely investigated to understand its adverse harms on fauna, but the role of fauna itself in plastic fragmentation has been rarely addressed. Here, we review and discuss the available experimental results on the role of terrestrial and aquatic macrofauna in plastic biofragmentation and degradation. Recent studies have shown how biting, chewing, and stomach contractions of organisms shatter ingested plastic along their digestive tracts. Gut microbial communities can play a role in biodegradation and their composition can shift according to the type of plastic ingested. Shifts in molecular weights, chemical bond forming and breaking, and changes in thermal modification detected in the plastic debris present in the faeces also suggest active biodegradation. A few studies have also shown interactions other than ingestion, such as burrowing, may actively or passively promote physical plastic fragmentation by fauna. We suggest that further investigations into the role of fauna in physical fragmentation and chemical degradation linked to active ingestion and gut associated microbiota metabolism, respectively, should be conducted to better evaluate the impact of these mechanisms on the release of micro- and nano-plastic in the environment. Knowledge on macrofauna other than marine invertebrates and terrestrial soil dwelling invertebrates is particularly lacking, as well as focus on broader types of plastic polymers.


Assuntos
Plásticos , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Monitoramento Ambiental , Invertebrados , Solo , Poluentes Químicos da Água/análise
13.
Sci Total Environ ; 822: 153463, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35101492

RESUMO

The acquisition of data to safeguard marine protected areas located close to ports is important in order to develop plans that allow effective protection from pollution as well as sustainable development of the port. The area Secche della Meloria is a Marine Protected Area (MPA-MEL) three miles from Livorno Harbour (LH), which is characterized by a long history of pollution. Here we studied the bioaccumulation and transcriptomic patterns of the marbled crab, Pachygrapsus marmoratus (Fabricius, 1787) (Crustacea; Brachyura, Grapsidae), inhabiting the two selected sites. Results showed that the two crab populations are significantly different in their chemical composition of trace elements and Polyciclic Aromatic Hydrocarbons (PAHs), and gene expression patterns (1280 DEGs). Enrichment analysis indicated that crabs at LH had the highest stress response genes, and they were associated with higher levels of bioaccumulation detected in body tissues. We are confident that the significant differential gene expression profiles observed between crabs, characterized by significant chemical differences, is associated with responses to contaminant exposure.


Assuntos
Braquiúros , Poluentes Químicos da Água , Animais , Braquiúros/genética , Alimentos Marinhos , Transcriptoma , Poluentes Químicos da Água/metabolismo
14.
Environ Sci Technol ; 56(4): 2386-2397, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35089026

RESUMO

Coastal wetlands trap plastics from terrestrial and marine sources, but the stocks of plastics and their impacts on coastal wetlands are poorly known. We evaluated the stocks, fate, and biological and biogeochemical effects of plastics in coastal wetlands with plastic abundance data from 112 studies. The representative abundance of plastics that occurs in coastal wetland sediments and is ingested by marine animals reaches 156.7 and 98.3 items kg-1, respectively, 200 times higher than that (0.43 items kg-1) in the water column. Plastics are more abundant in mangrove forests and tidal marshes than in tidal flats and seagrass meadows. The variation in plastic abundance is related to climatic and geographic zones, seasons, and population density or plastic waste management. The abundance of plastics ingested by pelagic and demersal fish increases with fish length and dry weight. The dominant characteristics of plastics ingested by marine animals are correlated with those found in coastal wetland sediments. Microplastics exert negative effects on biota abundance and mangrove survival but positive effects on sediment nutrients, leaf drop, and carbon emission. We highlight that plastic pollution is widespread in coastal wetlands and actions are urged to include microplastics in ecosystem health and degradation assessment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Plásticos , Poluentes Químicos da Água/análise , Áreas Alagadas
15.
Sci Total Environ ; 818: 151809, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34808167

RESUMO

The hotspots for mangrove diversity and plastic emissions from rivers overlap in Asia, however very few studies have investigated anthropogenic marine debris (AMD) pollution in these threatened coastal ecosystems. Despite Hong Kong's position at the mouth of the Pearl River, a major source of mismanaged waste in Asia, the mangroves in Hong Kong have never been extensively surveyed for AMD. Here we assessed the patterns of AMD abundance within 18 mangrove forests across Hong Kong surveying both their landward and seaward zones. We recorded and categorised, according to their material and potential uses, both the amount of debris items and area they covered, to better quantify its potential impact on the mangroves. Across Hong Kong mangroves, the average abundance of debris was 1.45 ± 0.38 (SE) items m-2, with an average coverage of 6.05 ± 1.59%. Plastic formed a high proportion of AMD accounting for 70.31% by number of items and 49.71% by area covered, followed by glass/ceramics and wood/bamboo. Disposable food packaging, fishing gear and industrial and construction related waste were the major sources of AMD we documented. On average, we recorded about six times more debris items m-2 at the landward sites than at the seaward one, but these abundances varied between the East and the West coastlines of Hong Kong. Our data confirms the hypothesis that landward areas of mangrove forests act as traps and retain marine borne debris, but they also suggest that direct dumping of waste from the land could represent a serious impact for these forests placed in between the land and the sea. More research is needed to ascertain the impact of land disposed debris on mangrove degradation, and this study strongly advocates for a cultural shift about the perception of these forests by the public.


Assuntos
Ecossistema , Resíduos , Monitoramento Ambiental , Hong Kong , Plásticos , Resíduos/análise , Água
16.
BMC Ecol Evol ; 21(1): 180, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556035

RESUMO

BACKGROUND: Mangroves are tropical and subtropical intertidal forests colonising sheltered coasts across the world. They host a unique faunal community, dominated by brachyuran crabs and gastropods. These invertebrates strongly contribute to the functionality of the entire forest. The reliable assessment of mangrove faunal diversity is, thus, a crucial step for efficient management and conservation plans, but it is hindered by difficulties in species identification. Here we provide a verified DNA barcode library for brachyuran crabs and gastropods inhabiting the mangroves of the Greater Bay Area, Southern China. In particular, we collected and morphologically identified 1100 specimens of mangrove associated brachyuran crabs and gastropods. The partial sequences of the mtDNA cytochrome oxidase subunit I gene were obtained from 275 specimens. Barcode sequences were then used to delineate Molecular Operational Taxonomic Units (MOTUs), employing three different delimitation methods: the automatic barcode gap discovery (ABGD) method, the general mixed Yule coalescent (GMYC) model and a Bayesian implementation of the Poisson tree processes (bPTP) model. RESULTS: By integrating DNA barcodes with morphology, we identified 44 gastropod species and 58 brachyuran species associated with Hong Kong mangroves, with five and seven new records, for gastropods and crabs, respectively, for the Greater Bay Area. The delineation of MOTUs based on barcode sequences revealed a strong congruence between morphological and molecular identification for both taxa, showing the high reliability of the barcode library. CONCLUSIONS: This study provides the first reference barcode library for mangrove-associated macrobenthic fauna in the Greater Bay Area and represents a reliable tool to management and conservation plans. Our molecular analyses resolved long lasting taxonomic misidentifications and inconsistencies and updated the knowledge on the geographical distribution of Asian mangrove associated fauna, ultimately highlighting a level of biodiversity higher than previously thought for Southern China.


Assuntos
Braquiúros , Gastrópodes , Animais , Teorema de Bayes , Braquiúros/genética , China , Código de Barras de DNA Taxonômico , Florestas , Gastrópodes/genética , Hong Kong , Filogenia , Reprodutibilidade dos Testes
17.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34312251

RESUMO

Deforestation results in habitat fragmentation, decreasing diversity, and functional degradation. For mangroves, no data are available on the impact of deforestation on the diversity and functionality of the specialized invertebrate fauna, critical for their functioning. We compiled a global dataset of mangrove invertebrate fauna comprising 364 species from 16 locations, classified into 64 functional entities (FEs). For each location, we calculated taxonomic distinctness (Δ+), functional richness (FRi), functional redundancy (FRe), and functional vulnerability (FVu) to assess functional integrity. Δ+ and FRi were significantly related to air temperature but not to geomorphic characteristics, mirroring the global biodiversity anomaly of mangrove trees. Neither of those two indices was linked to forest area, but both sharply decreased in human-impacted mangroves. About 60% of the locations showed an average FRe < 2, indicating that most of the FEs comprised one species only. Notable exceptions were the Eastern Indian Ocean and west Pacific Ocean locations, but also in this region, 57% of the FEs had no redundancy, placing mangroves among the most vulnerable ecosystems on the planet. Our study shows that despite low redundancy, even small mangrove patches host truly multifunctional faunal assemblages, ultimately underpinning their services. However, our analyses also suggest that even a modest local loss of invertebrate diversity could have significant negative consequences for many mangroves and cascading effects for adjacent ecosystems. This pattern of faunal-mediated ecosystem functionality is crucial for assessing the vulnerability of mangrove forests to anthropogenic impact and provides an approach to planning their effective conservation and restoration.


Assuntos
Invertebrados , Áreas Alagadas , Animais , Biodiversidade , Oceano Índico , Invertebrados/fisiologia , Oceano Pacífico , Árvores
18.
Environ Pollut ; 271: 116291, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33360658

RESUMO

Marine debris and plastic pollution affect all coastal habitats, however coastal debris studies are predominantly performed on sandy beaches. Other coastal habitats, such as mangroves, remain understudied. Eighteen of the top twenty rivers that contribute the most plastic to the ocean are associated with mangroves, but very few of those forests were investigated in terms of plastic debris pollution. Here we discuss the results of the few available studies on macrodebris conducted in mangroves, which show that mangrove debris research is still in its early stages, with many areas of study to be further investigated. Indeed, the distinct structural complexity of mangroves increases their ability to trap debris from both terrestrial, freshwater and marine sources, resulting in impacts unique to the mangrove ecosystem. Our review highlights a significant lack in standardisation across the performed surveys. Here we suggest standardised guidelines for future integrated macrodebris and microplastic studies in mangroves to facilitate comparisons between studies. Such standardisation should prioritize the use of stratified random sampling, the measurement of the area covered by the debris and the abundance and type of macrodebris and microplastics found, in order to assess the ecological impact of macrodebris and its role as source of microplastics for adjacent ecosystems. We also advocate the use of standard categories across studies, based on those identified for surveying other coastal habitats. This review highlights an alarming knowledge gap in extent, sources and overall impacts of marine macrodebris, mainly constituted by plastic, on mangrove forests, which hinders policy making to address this issue. Standardised, reliable and extended research on this aspect of mangrove pollution is needed to manage and protect these endangered vegetated coastal ecosystems.


Assuntos
Ecossistema , Plásticos , Monitoramento Ambiental , Poluição Ambiental , Resíduos/análise , Áreas Alagadas
19.
Mar Genomics ; 55: 100792, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32586711

RESUMO

The marble crab Pachygrapsus marmoratus inhabits the rocky shores of the Mediterranean Sea, Black Sea and East Atlantic Ocean. As other intertidal species, it is considered a model species to study the effects of environmental stressors on natural populations. In this study, we performed Illumina next-generation sequencing on eleven P. marmoratus specimens with the aims to (i) reconstruct their whole transcriptome, (ii) perform a functional annotation of the assembled transcriptome and (iii) develop gene-based markers for future genetic and genomic studies on this as well as other brachyuran species. We obtained a transcriptome assembly constituted by 56,308 unigenes and covering about 60.3 Mbp. We detected 43,915 Simple Sequence Repeats (SSRs) and 192,631 high-quality Single Nucleotide Polymorphisms (SNPs). Due to the scarcity of genomic resources in decapods, and crabs in particular, our results constitute a valuable resource for future studies on brachyuran crabs. The present data also represent a sound resource to investigate biological responses to pollution in intertidal and marine populations.


Assuntos
Braquiúros/genética , Marcadores Genéticos , Transcriptoma , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular
20.
Front Microbiol ; 11: 575372, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117320

RESUMO

The transition to terrestrial environments by formerly aquatic species has occurred repeatedly in many animal phyla and lead to the vast diversity of extant terrestrial species. The differences between aquatic and terrestrial habitats are enormous and involved remarkable morphological and physiological changes. Convergent evolution of various traits is evident among phylogenetically distant taxa, but almost no information is available about the role of symbiotic microbiota in such transition. Here, we suggest that intertidal and terrestrial brachyuran crabs are a perfect model to study the evolutionary pathways and the ecological role of animal-microbiome symbioses, since their transition to land is happening right now, through a number of independent lineages. The microorganisms colonizing the gut of intertidal and terrestrial crabs are expected to play a major role to conquer the land, by reducing water losses and permitting the utilization of novel food sources. Indeed, it has been shown that the microbiomes hosted in the digestive system of terrestrial isopods has been critical to digest plant items, but nothing is known about the microbiomes present in the gut of truly terrestrial crabs. Other important physiological regulations that could be facilitated by microbiomes are nitrogen excretion and osmoregulation in the new environment. We also advocate for advances in comparative and functional genomics to uncover physiological aspects of these ongoing evolutionary processes. We think that the multidisciplinary study of microorganisms associated with terrestrial crabs will shed a completely new light on the biological and physiological processes involved in the sea-land transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA