Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Cancers (Basel) ; 16(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38254873

RESUMO

RNA-binding proteins play diverse roles in cancer, influencing various facets of the disease, including proliferation, apoptosis, angiogenesis, senescence, invasion, epithelial-mesenchymal transition (EMT), and metastasis. HuR, a known RBP, is recognized for stabilizing mRNAs containing AU-rich elements (AREs), although its complete repertoire of mRNA targets remains undefined. Through a bioinformatics analysis of the gene expression profile of the Hs578T basal-like triple-negative breast cancer cell line with silenced HuR, we have identified SOX9 as a potential HuR-regulated target. SOX9 is a transcription factor involved in promoting EMT, metastasis, survival, and the maintenance of cancer stem cells (CSCs) in triple-negative breast cancer. Ribonucleoprotein immunoprecipitation assays confirm a direct interaction between HuR and SOX9 mRNA. The half-life of SOX9 mRNA and the levels of SOX9 protein decreased in cells lacking HuR. Cells silenced for HuR exhibit reduced migration and invasion compared to control cells, a phenotype similar to that described for SOX9-silenced cells.

2.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37762708

RESUMO

Lysyl Oxidase Like 2 (LOXL2) belongs to the lysyl oxidase (LOX) family, which comprises five lysine tyrosylquinone (LTQ)-dependent copper amine oxidases in humans. In 2003, LOXL2 was first identified as a promoter of tumour progression and, over the course of two decades, numerous studies have firmly established its involvement in multiple cancers. Extensive research with large cohorts of human tumour samples has demonstrated that dysregulated LOXL2 expression is strongly associated with poor prognosis in patients. Moreover, investigations have revealed the association of LOXL2 with various targets affecting diverse aspects of tumour progression. Additionally, the discovery of a complex network of signalling factors acting at the transcriptional, post-transcriptional, and post-translational levels has provided insights into the mechanisms underlying the aberrant expression of LOXL2 in tumours. Furthermore, the development of genetically modified mouse models with silenced or overexpressed LOXL2 has enabled in-depth exploration of its in vivo role in various cancer models. Given the significant role of LOXL2 in numerous cancers, extensive efforts are underway to identify specific inhibitors that could potentially improve patient prognosis. In this review, we aim to provide a comprehensive overview of two decades of research on the role of LOXL2 in cancer.


Assuntos
Amina Oxidase (contendo Cobre) , Neoplasias , Animais , Camundongos , Humanos , Proteína-Lisina 6-Oxidase , Neoplasias/genética , Modelos Animais de Doenças , Regiões Promotoras Genéticas , Aminoácido Oxirredutases/genética
3.
Molecules ; 28(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298909

RESUMO

Lysyl oxidase-like 2 (LOXL2) was initially described as an extracellular enzyme involved in extracellular matrix remodeling. Nevertheless, numerous recent reports have implicated intracellular LOXL2 in a wide variety of processes that impact on gene transcription, development, differentiation, proliferation, migration, cell adhesion, and angiogenesis, suggesting multiple different functions for this protein. In addition, increasing knowledge about LOXL2 points to a role in several types of human cancer. Moreover, LOXL2 is able to induce the epithelial-to-mesenchymal transition (EMT) process-the first step in the metastatic cascade. To uncover the underlying mechanisms of the great variety of functions of intracellular LOXL2, we carried out an analysis of LOXL2's nuclear interactome. This study reveals the interaction of LOXL2 with numerous RNA-binding proteins (RBPs) involved in several aspects of RNA metabolism. Gene expression profile analysis of cells silenced for LOXL2, combined with in silico identification of RBPs' targets, points to six RBPs as candidates to be substrates of LOXL2's action, and that deserve a more mechanistic analysis in the future. The results presented here allow us to hypothesize novel LOXL2 functions that might help to comprehend its multifaceted role in the tumorigenic process.


Assuntos
Neoplasias , Humanos , Transição Epitelial-Mesenquimal/genética , Diferenciação Celular , Matriz Extracelular/metabolismo , Adesão Celular , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo
5.
Gut ; 72(2): 345-359, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35428659

RESUMO

OBJECTIVE: The lysyl oxidase-like protein 2 (LOXL2) contributes to tumour progression and metastasis in different tumour entities, but its role in pancreatic ductal adenocarcinoma (PDAC) has not been evaluated in immunocompetent in vivo PDAC models. DESIGN: Towards this end, we used PDAC patient data sets, patient-derived xenograft in vivo and in vitro models, and four conditional genetically-engineered mouse models (GEMMS) to dissect the role of LOXL2 in PDAC. For GEMM-based studies, K-Ras +/LSL-G12D;Trp53 LSL-R172H;Pdx1-Cre mice (KPC) and the K-Ras +/LSL-G12D;Pdx1-Cre mice (KC) were crossed with Loxl2 allele floxed mice (Loxl2Exon2 fl/fl) or conditional Loxl2 overexpressing mice (R26Loxl2 KI/KI) to generate KPCL2KO or KCL2KO and KPCL2KI or KCL2KI mice, which were used to study overall survival; tumour incidence, burden and differentiation; metastases; epithelial to mesenchymal transition (EMT); stemness and extracellular collagen matrix (ECM) organisation. RESULTS: Using these PDAC mouse models, we show that while Loxl2 ablation had little effect on primary tumour development and growth, its loss significantly decreased metastasis and increased overall survival. We attribute this effect to non-cell autonomous factors, primarily ECM remodelling. Loxl2 overexpression, on the other hand, promoted primary and metastatic tumour growth and decreased overall survival, which could be linked to increased EMT and stemness. We also identified tumour-associated macrophage-secreted oncostatin M (OSM) as an inducer of LOXL2 expression, and show that targeting macrophages in vivo affects Osm and Loxl2 expression and collagen fibre alignment. CONCLUSION: Taken together, our findings establish novel pathophysiological roles and functions for LOXL2 in PDAC, which could be potentially exploited to treat metastatic disease.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Transição Epitelial-Mesenquimal/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Macrófagos/metabolismo , Aminoácido Oxirredutases/genética , Neoplasias Pancreáticas
6.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628534

RESUMO

Lysyl oxidase-like 2 (LOXL2) and 3 (LOXL3) are members of the lysyl oxidase family of enzymes involved in the maturation of the extracellular matrix. Both enzymes share a highly conserved catalytic domain, but it is unclear whether they perform redundant functions in vivo. In this study, we show that mice lacking Loxl3 exhibit perinatal lethality and abnormal skeletal development. Additionally, analysis of the genotype of embryos carrying double knockout of Loxl2 and Loxl3 genes suggests that both enzymes have overlapping functions during mouse development. Furthermore, we also show that ubiquitous expression of Loxl2 suppresses the lethality associated with Loxl3 knockout mice.


Assuntos
Aminoácido Oxirredutases , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Animais , Desenvolvimento Embrionário , Matriz Extracelular/metabolismo , Feminino , Genes Letais , Camundongos , Camundongos Knockout , Gravidez
7.
Cancers (Basel) ; 14(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35267510

RESUMO

Malignant melanoma is a highly aggressive tumor causing most skin cancer-related deaths. Understanding the fundamental mechanisms responsible for melanoma progression and therapeutic evasion is still an unmet need for melanoma patients. Progression of skin melanoma and its dissemination to local or distant organs relies on phenotypic plasticity of melanoma cells, orchestrated by EMT-TFs and microphthalmia-associated TF (MITF). Recently, melanoma phenotypic switching has been proposed to uphold context-dependent intermediate cell states benefitting malignancy. LOXL3 (lysyl oxidase-like 3) promotes EMT and has a key role in human melanoma cell survival and maintenance of genomic integrity. To further understand the role of Loxl3 in melanoma, we generated a conditional Loxl3-knockout (KO) melanoma mouse model in the context of BrafV600E-activating mutation and Pten loss. Melanocyte-Loxl3 deletion increased melanoma latency, decreased tumor growth, and reduced lymph node metastatic dissemination. Complementary in vitro and in vivo studies in mouse melanoma cells confirmed Loxl3's contribution to melanoma progression and metastasis, in part by modulating phenotypic switching through Snail1 and Prrx1 EMT-TFs. Importantly, a novel LOXL3-SNAIL1-PRRX1 axis was identified in human melanoma, plausibly relevant to melanoma cellular plasticity. These data reinforced the value of LOXL3 as a therapeutic target in melanoma.

9.
Cancer Res ; 81(17): 4529-4544, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34145034

RESUMO

Cancer stem cells (CSC) are considered responsible for tumor initiation, therapeutic resistance, and metastasis. A comprehensive knowledge of the mechanisms governing the acquisition and maintenance of cancer stemness is crucial for the development of new therapeutic approaches in oncology. E2A basic helix-loop-helix (bHLH) transcription factors are associated with epithelial-mesenchymal transition (EMT) and tumor progression, but knowledge of their functional contributions to cancer biology is still limited. Using a combination of in vivo and in vitro analyses in a novel PyMT-E2A conditional knockout mouse model and derived primary tumor cell lines, we report here an essential role of E2A in stemness, metastasis, and therapeutic resistance in breast cancer. Targeted deletion of E2A in the mammary gland impaired tumor-initiating ability and dedifferentiation potential and severely compromised metastatic competence of PyMT-driven mammary tumors. Mechanistic studies in PyMT-derived cell lines indicated that E2A actions are mediated by the upregulation of Snai1 transcription. Importantly, high E2A and SNAIL1 expression occurred in aggressive human basal-like breast carcinomas, highlighting the relevance of the E2A-Snail1 axis in metastatic breast cancer. In addition, E2A factors contributed to the maintenance of genomic integrity and resistance to PARP inhibitors in PyMT and human triple-negative breast cancer cells. Collectively, these results support the potential for E2A transcription factors as novel targets worthy of translational consideration in breast cancer. SIGNIFICANCE: These findings identify key functions of E2A factors in breast cancer cell stemness, metastasis, and drug resistance, supporting a therapeutic vulnerability to targeting E2A proteins in breast cancer.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Neoplasias da Mama/genética , Carcinogênese , Diferenciação Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Simulação por Computador , Transição Epitelial-Mesenquimal , Feminino , Deleção de Genes , Genoma , Genótipo , Humanos , Masculino , Neoplasias Mamárias Animais , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Metástase Neoplásica , Células-Tronco Neoplásicas , Ftalazinas/farmacologia , Piperazinas/farmacologia , Fatores de Transcrição da Família Snail/metabolismo , Transgenes , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
10.
Oral Oncol ; 110: 105003, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932170

RESUMO

OBJECTIVES: The function of NOTCH signaling (oncogenic or oncosuppressive) remains controversial in head and neck squamous cell carcinomas (HNSCC). The purpose of this work is to investigate the role of NOTCH pathway in HNSCC prognosis. METHODS: Immunohistochemical NOTCH1 and HES1 expression was jointly evaluated and correlated with other NOTCH1 targets, p21 (WAF1/Cip1) and Cyclin D1, using an unbiased cohort of 372 surgically treated HPV-negative HNSCC patients. RESULTS: Membranous NOTCH1 expression was detected in 197 (61%) out of 324 evaluable tumor samples, and nuclear NOTCH1 expression in 91 samples (28%). Nuclear HES1 expression was found in 224 (67%) cases. Membranous and nuclear NOTCH1 expression were consistently and significantly correlated with nuclear HES1 (P < 0.001) and p21 (P = 0.03) expression, but not with Cyclin D1. NOTCH1 expression was significantly associated to early stages (I-II), non-recurrent disease, and better disease-specific (DSS) and overall survival (OS) rates (P < 0.001). Moreover, triple-positive cases (NOTCH1+/HES1+/p21+) exhibited significantly improved DSS (P < 0.001) and OS (P = 0.004), thus reinforcing the association of NOTCH pathway activation with a better prognosis in HNSCC. Multivariate analysis further revealed membranous NOTCH1 expression as a robust independent predictor of better DSS (HR = 0.554; 95% IC 0.412-0.745; P < 0.001) and better OS (HR = 0.640; 95% CI 0.491-0.835; P = 0.001). CONCLUSION: These findings show the association of NOTCH pathway activation with a better prognosis in HNSCC patients, also revealing membranous NOTCH1 expression as a robust independent predictor of improved survival. Accordingly, these results suggest a tumor suppressive rather than an oncogenic role for NOTCH pathway in HNSCC.


Assuntos
Receptores Notch/metabolismo , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Linhagem Celular Tumoral , Biologia Computacional/métodos , Gerenciamento Clínico , Suscetibilidade a Doenças , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Receptores Notch/genética , Recidiva , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/etiologia , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo
11.
Nat Rev Mol Cell Biol ; 21(6): 341-352, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32300252

RESUMO

Epithelial-mesenchymal transition (EMT) encompasses dynamic changes in cellular organization from epithelial to mesenchymal phenotypes, which leads to functional changes in cell migration and invasion. EMT occurs in a diverse range of physiological and pathological conditions and is driven by a conserved set of inducing signals, transcriptional regulators and downstream effectors. With over 5,700 publications indexed by Web of Science in 2019 alone, research on EMT is expanding rapidly. This growing interest warrants the need for a consensus among researchers when referring to and undertaking research on EMT. This Consensus Statement, mediated by 'the EMT International Association' (TEMTIA), is the outcome of a 2-year-long discussion among EMT researchers and aims to both clarify the nomenclature and provide definitions and guidelines for EMT research in future publications. We trust that these guidelines will help to reduce misunderstanding and misinterpretation of research data generated in various experimental models and to promote cross-disciplinary collaboration to identify and address key open questions in this research field. While recognizing the importance of maintaining diversity in experimental approaches and conceptual frameworks, we emphasize that lasting contributions of EMT research to increasing our understanding of developmental processes and combatting cancer and other diseases depend on the adoption of a unified terminology to describe EMT.


Assuntos
Pesquisa Biomédica/normas , Transição Epitelial-Mesenquimal , Animais , Movimento Celular , Plasticidade Celular , Consenso , Biologia do Desenvolvimento/normas , Humanos , Neoplasias/patologia , Terminologia como Assunto
12.
J Clin Med ; 9(2)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012729

RESUMO

Traditionally, studies to address the characterization of mechanisms promoting tumor aggressiveness and progression have been focused only on primary tumor analyses, which could provide relevant information but have limitations to really characterize the more aggressive tumor population. To overcome these limitations, circulating tumor cells (CTCs) represent a noninvasive and valuable tool for real-time profiling of disseminated tumor cells. Therefore, the aim of the present study was to explore the value of CTC enumeration and characterization to identify markers associated with the outcome and the aggressiveness of triple-negative breast cancer (TNBC). For that aim, the CTC population from 32 patients diagnosed with TNBC was isolated and characterized. This population showed important cell plasticity in terms of expression of epithelia/mesenchymal and stemness markers, suggesting the relevance of epithelial to mesenchymal transition (EMT) intermediate phenotypes for efficient tumor dissemination. Importantly, the CTC signature demonstrated prognostic value to predict the patients' outcome and pointed to a relevant role of tissue inhibitor of metalloproteinases 1 (TIMP1) and androgen receptor (AR) for TNBC biology. Furthermore, we also analyzed the usefulness of the AR and TIMP1 blockade to target TNBC proliferation and dissemination using in vitro and in vivo zebra fish and mouse models. Overall, the molecular characterization of CTCs from advanced TNBC patients identifies highly specific biomarkers with potential applicability as noninvasive prognostic markers and reinforced the value of TIMP1 and AR as potential therapeutic targets to tackle the most aggressive breast cancer.

13.
Int J Cancer ; 147(1): 218-229, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31850518

RESUMO

Head and neck squamous cell carcinoma (HNSCC) arises from the mucosal lining of the upper aerodigestive tract and display few treatment options in advanced stages. Despite increased knowledge of HNSCC molecular biology, the identification of new players involved in triggering HNSCC recurrence and metastatic disease is needed. We uncover that G-protein-coupled receptor kinase-2 (GRK2) expression is reduced in undifferentiated, high-grade human HNSCC tumors, whereas its silencing in model human HNSCC cells is sufficient to trigger epithelial-to-mesenchymal transition (EMT) phenotypic features, an EMT-like transcriptional program and enhanced lymph node colonization from orthotopic tongue tumors in mice. Conversely, enhancing GRK2 expression counteracts mesenchymal cells traits by mechanisms involving phosphorylation and decreased functionality of the key EMT inducer Snail1. Our results suggest that GRK2 safeguards the epithelial phenotype, whereas its downregulation contributes to the activation of EMT programs in HNSCC.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Neoplasias de Cabeça e Pescoço/enzimologia , Neoplasias de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/enzimologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Animais , Linhagem Celular Tumoral , Progressão da Doença , Regulação para Baixo , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Quinase 2 de Receptor Acoplado a Proteína G/biossíntese , Quinase 2 de Receptor Acoplado a Proteína G/genética , Neoplasias de Cabeça e Pescoço/genética , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Fosforilação , Fatores de Transcrição da Família Snail/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
14.
Int J Mol Sci ; 20(19)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569601

RESUMO

BACKGROUND: The goal of this study was to determine if adenovirus-delivered LOXL2 protects against progressive knee osteoarthritis (OA), assess its specific mechanism of action; and determine if the overexpression of LOXL2 in transgenic mice can protect against the development of OA-related cartilage damage and joint disability. METHODS: Four-month-old Cho/+ male and female mice were intraperitoneally injected with either Adv-RFP-LOXL2 or an empty vector twice a month for four months. The proteoglycan levels and the expression of anabolic and catabolic genes were examined by immunostaining and qRT-PCR. The effect of LOXL2 expression on signaling was tested via the pro-inflammatory cytokine IL1ß in the cartilage cell line ATDC5. Finally; the OA by monosodium iodoacetate (MIA) injection was also induced in transgenic mice with systemic overexpression of LOXL2 and examined gene expression and joint function by treadmill tests and assessment of allodynia. RESULTS: The adenovirus treatment upregulated LOXL2; Sox9; Acan and Runx2 expression in both males and females. The Adv-RFP-LOXL2 injection; but not the empty vector injection increased proteoglycan staining and aggrecan expression but reduced MMP13 expression. LOXL2 attenuated IL-1ß-induced phospho-NF-κB/p65 and rescued chondrogenic lineage-related genes in ATDC5 cells; demonstrating one potential protective mechanism. LOXL2 attenuated phospho-NF-κB independent of its enzymatic activity. Finally; LOXL2-overexpressing transgenic mice were protected from MIA-induced OA-related functional changes; including the time and distance traveled on the treadmill and allodynia. CONCLUSION: Our study demonstrates that systemic LOXL2 adenovirus or LOXL2 genetic overexpression in mice can protect against OA. These findings demonstrate the potential for LOXL2 gene therapy for knee-OA clinical treatment in the future.


Assuntos
Envelhecimento/genética , Aminoácido Oxirredutases/genética , Osteoartrite do Joelho/etiologia , Osteoartrite do Joelho/patologia , Adenoviridae/genética , Aminoácido Oxirredutases/metabolismo , Animais , Artrite Experimental , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Modelos Animais de Doenças , Progressão da Doença , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Interleucina-1beta/metabolismo , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Osteoartrite do Joelho/metabolismo , Transdução Genética
15.
J Clin Med ; 8(5)2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091749

RESUMO

Therapy resistance is responsible for tumour recurrence and represents one of the major challenges in present oncology. Significant advances have been made in the understanding of the mechanisms underlying resistance to conventional and targeted therapies improving the clinical management of relapsed patients. Unfortunately, in too many cases, resistance reappears leading to a fatal outcome. The recent introduction of immunotherapy regimes has provided an unprecedented success in the treatment of specific cancer types; however, a good percentage of patients do not respond to immune-based treatments or ultimately become resistant. Cellular plasticity, cancer cell stemness and tumour heterogeneity have emerged as important determinants of treatment resistance. Epithelial-to-mesenchymal transition (EMT) is associated with resistance in many different cellular and preclinical models, although little evidence derives directly from clinical samples. The recognition of the presence in tumours of intermediate hybrid epithelial/mesenchymal states as the most likely manifestation of epithelial plasticity and their potential link to stemness and tumour heterogeneity, provide new clues to understanding resistance and could be exploited in the search for anti-resistance strategies. Here, recent evidence linking EMT/epithelial plasticity to resistance against conventional, targeted and immune therapy are summarized. In addition, future perspectives for related clinical approaches are also discussed.

16.
Clin Cancer Res ; 25(15): 4846-4858, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31064780

RESUMO

PURPOSE: Gasdermin B (GSDMB) overexpression/amplification occurs in about 60% of HER2 breast cancers, where it promotes cell migration, resistance to anti-HER2 therapies, and poor clinical outcome. Thus, we tackle GSDMB cytoplasmic overexpression as a new therapeutic target in HER2 breast cancers. EXPERIMENTAL DESIGN: We have developed a new targeted nanomedicine based on hyaluronic acid-biocompatible nanocapsules, which allow the intracellular delivery of a specific anti-GSDMB antibody into HER2 breast cancer cells both in vitro and in vivo. RESULTS: Using different models of HER2 breast cancer cells, we show that anti-GSDMB antibody loaded to nanocapsules has significant and specific effects on GSDMB-overexpressing cancer cells' behavior in ways such as (i) lowering the in vitro cell migration induced by GSDMB; (ii) enhancing the sensitivity to trastuzumab; (iii) reducing tumor growth by increasing apoptotic rate in orthotopic breast cancer xenografts; and (iv) diminishing lung metastasis in MDA-MB-231-HER2 cells in vivo. Moreover, at a mechanistic level, we have shown that AbGB increases GSDMB binding to sulfatides and consequently decreases migratory cell behavior and may upregulate the potential intrinsic procell death activity of GSDMB. CONCLUSIONS: Our findings portray the first evidence of the effectiveness and specificity of an antibody-based nanomedicine that targets an intracellular oncoprotein. We have proved that intracellular-delivered anti-GSDMB reduces diverse protumor GSDMB functions (migration, metastasis, and resistance to therapy) in an efficient and specific way, thus providing a new targeted therapeutic strategy in aggressive HER2 cancers with poor prognosis.


Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Movimento Celular , Resistencia a Medicamentos Antineoplásicos , Proteínas de Neoplasias/antagonistas & inibidores , Receptor ErbB-2/antagonistas & inibidores , Trastuzumab/farmacologia , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Espaço Intracelular , Camundongos , Nanocápsulas/química , Proteínas de Neoplasias/metabolismo , Receptor ErbB-2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
PLoS One ; 13(6): e0199679, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29953488

RESUMO

Lysyl oxidase-like 2 (LOXL2) is a copper-dependent monoamine oxidase that contributes to the remodelling of the extracellular matrix (ECM) by cross linkage of collagen and elastin fibres and has emerged as a potential therapeutic target in cancer and fibrosis. In the skin, LOXL2 is essential for epidermal cell polarity and differentiation. However, its role in the dermis has not been evaluated. We found that Loxl2 is dispensable for mouse dermal development, maturation and homeostasis, yet affects dermal stiffness. Neither loss of Loxl2 nor increased Loxl2 expression affected dermal architecture following treatment with the phorbol ester TPA. Furthermore, Loxl2 expression did not alter the stroma of DMBA-TPA-induced tumours. We conclude that, although Loxl2 is expressed in both dermis and epidermis, its function appears largely confined to the epidermis.


Assuntos
Aminoácido Oxirredutases/metabolismo , Derme/enzimologia , Matriz Extracelular/enzimologia , Proteínas de Neoplasias/metabolismo , Neoplasias Cutâneas/enzimologia , Aminoácido Oxirredutases/genética , Animais , Colágeno/genética , Colágeno/metabolismo , Derme/patologia , Elastina/genética , Elastina/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/patologia , Humanos , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Acetato de Tetradecanoilforbol/toxicidade
18.
Cell Death Differ ; 25(5): 935-950, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29229995

RESUMO

Lysyl oxidase-like 3 (LOXL3) is a member of the lysyl oxidase family comprising multifunctional enzymes with depicted roles in extracellular matrix maturation, tumorigenesis, and metastasis. In silico expression analyses followed by experimental validation in a comprehensive cohort of human cell lines revealed a significant upregulation of LOXL3 in human melanoma. We show that LOXL3 silencing impairs cell proliferation and triggers apoptosis in various melanoma cell lines. Further supporting a pro-oncogenic role in melanoma, LOXL3 favors tumor growth in vivo and cooperates with oncogenic BRAF in melanocyte transformation. Upon LOXL3 depletion, melanoma cells display a faulty DNA damage response (DDR), characterized by ATM checkpoint activation and inefficient ATR activation leading to the accumulation of double-strand breaks (DSBs) and aberrant mitosis. Consistent with these findings, LOXL3 binds to proteins involved in the maintenance of genome integrity, in particular BRCA2 and MSH2, whose levels dramatically decrease upon LOXL3 depletion. Moreover, LOXL3 is required for efficient DSB repair in melanoma cells. Our results reveal an unexpected role for LOXL3 in the control of genome stability and melanoma progression, exposing its potential as a novel therapeutic target in malignant melanoma, a very aggressive condition yet in need for more effective treatment options.


Assuntos
Aminoácido Oxirredutases/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Instabilidade Genômica , Melanoma/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Aminoácido Oxirredutases/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Melanoma/genética , Melanoma/patologia , Proteínas Proto-Oncogênicas B-raf/genética
19.
Cancer Res ; 77(21): 5846-5859, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28720577

RESUMO

The lysyl oxidase-like protein LOXL2 has been suggested to contribute to tumor progression and metastasis, but in vivo evidence has been lacking. Here we provide functional evidence that LOXL2 is a key driver of breast cancer metastasis in two conditional transgenic mouse models of PyMT-induced breast cancer. LOXL2 ablation in mammary tumor cells dramatically decreased lung metastasis, whereas LOXL2 overexpression promoted metastatic tumor growth. LOXL2 depletion or overexpression in tumor cells does not affect extracellular matrix stiffness or organization in primary and metastatic tumors, implying a function for LOXL2 independent of its conventional role in extracellular matrix remodeling. In support of this likelihood, cellular and molecular analyses revealed an association of LOXL2 action with elevated levels of the EMT regulatory transcription factor Snail1 and expression of several cytokines that promote premetastatic niche formation. Taken together, our findings established a pathophysiologic role and new function for LOXL2 in breast cancer metastasis. Cancer Res; 77(21); 5846-59. ©2017 AACR.


Assuntos
Aminoácido Oxirredutases/genética , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Aminoácido Oxirredutases/deficiência , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal/genética , Matriz Extracelular/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Camundongos Transgênicos , Microscopia de Fluorescência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Células Tumorais Cultivadas
20.
Mol Oncol ; 11(7): 718-738, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28590039

RESUMO

Epithelial/mesenchymal transition (EMT) has emerged as a key regulator of metastasis by facilitating tumor cell invasion and dissemination to distant organs. Recent evidences support that the reverse mesenchymal/epithelial transition (MET) is required for metastatic outgrowth; moreover, the existence of hybrid epithelial/mesenchymal (E/M) phenotypes is increasingly being reported in different tumor contexts. The accumulated data strongly support that plasticity between epithelial and mesenchymal states underlies the dissemination and metastatic potential of carcinoma cells. However, the translation into the clinics of EMT and epithelial plasticity processes presents enormous challenges and still remains a controversial issue. In this review, we will evaluate current evidences for translational applicability of EMT and depict an overview of the most recent EMT in vivo models, EMT marker analyses in human samples as well as potential EMT therapeutic approaches and ongoing clinical trials. We foresee that standardized analyses of EMT markers in solid and liquid tumor biopsies in addition to innovative tools targeting the E/M states will become promising strategies for future translation to the clinical setting.


Assuntos
Biomarcadores Tumorais/metabolismo , Transição Epitelial-Mesenquimal , Neoplasias Experimentais/metabolismo , Animais , Humanos , Oncologia , Metástase Neoplásica , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA