Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nucleic Acids Res ; 51(8): 3988-3999, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36951109

RESUMO

High fidelity tRNA aminoacylation by aminoacyl-tRNA synthetases is essential for cell viability. ProXp-ala is a trans-editing protein that is present in all three domains of life and is responsible for hydrolyzing mischarged Ala-tRNAPro and preventing mistranslation of proline codons. Previous studies have shown that, like bacterial prolyl-tRNA synthetase, Caulobacter crescentus ProXp-ala recognizes the unique C1:G72 terminal base pair of the tRNAPro acceptor stem, helping to ensure deacylation of Ala-tRNAPro but not Ala-tRNAAla. The structural basis for C1:G72 recognition by ProXp-ala is still unknown and was investigated here. NMR spectroscopy, binding, and activity assays revealed two conserved residues, K50 and R80, that likely interact with the first base pair, stabilizing the initial protein-RNA encounter complex. Modeling studies are consistent with direct interaction between R80 and the major groove of G72. A third key contact between A76 of tRNAPro and K45 of ProXp-ala was essential for binding and accommodating the CCA-3' end in the active site. We also demonstrated the essential role that the 2'OH of A76 plays in catalysis. Eukaryotic ProXp-ala proteins recognize the same acceptor stem positions as their bacterial counterparts, albeit with different nucleotide base identities. ProXp-ala is encoded in some human pathogens; thus, these results have the potential to inform new antibiotic drug design.


Assuntos
Aminoacil-tRNA Sintetases , RNA de Transferência de Prolina , Humanos , RNA de Transferência de Prolina/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Prolina/química , Aminoacilação de RNA de Transferência , Códon , Domínio Catalítico
2.
bioRxiv ; 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36656782

RESUMO

The antiviral component of Paxlovid, nirmatrelvir (NIR), forms a covalent bond with Cys145 of SARS-CoV-2 nsp5. To explore NIR resistance we designed mutations to impair binding of NIR over substrate. Using 12 Omicron (BA.1) and WA.1 SARS-CoV-2 replicons, cell-based complementation and enzymatic assays, we showed that in both strains, E166V imparted high NIR resistance (∼55-fold), with major decrease in WA1 replicon fitness (∼20-fold), but not BA.1 (∼2-fold). WA1 replicon fitness was restored by L50F. These differences may contribute to a potentially lower barrier to resistance in Omicron than WA1. E166V is rare in untreated patients, albeit more prevalent in paxlovid-treated EPIC-HR clinical trial patients. Importantly, NIR-resistant replicons with E166V or E166V/L50F remained susceptible to a) the flexible GC376, and b) PF-00835231, which forms additional interactions. Molecular dynamics simulations show steric clashes between the rigid and bulky NIR t-butyl and ß-branched V166 distancing the NIR warhead from its Cys145 target. In contrast, GC376, through "wiggling and jiggling" accommodates V166 and still covalently binds Cys145. PF-00835231 uses its strategically positioned methoxy-indole to form a ß-sheet and overcome E166V. Drug design based on strategic flexibility and main chain-targeting may help develop second-generation nsp5-targeting antivirals efficient against NIR-resistant viruses.

3.
Viruses ; 14(7)2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35891536

RESUMO

Interactions between lysyl-tRNA synthetase (LysRS) and HIV-1 Gag facilitate selective packaging of the HIV-1 reverse transcription primer, tRNALys3. During HIV-1 infection, LysRS is phosphorylated at S207, released from a multi-aminoacyl-tRNA synthetase complex and packaged into progeny virions. LysRS is critical for proper targeting of tRNALys3 to the primer-binding site (PBS) by specifically binding a PBS-adjacent tRNA-like element (TLE), which promotes release of the tRNA proximal to the PBS. However, whether LysRS phosphorylation plays a role in this process remains unknown. Here, we used a combination of binding assays, RNA chemical probing, and small-angle X-ray scattering to show that both wild-type (WT) and a phosphomimetic S207D LysRS mutant bind similarly to the HIV-1 genomic RNA (gRNA) 5'UTR via direct interactions with the TLE and stem loop 1 (SL1) and have a modest preference for binding dimeric gRNA. Unlike WT, S207D LysRS bound in an open conformation and increased the dynamics of both the PBS region and SL1. A new working model is proposed wherein a dimeric phosphorylated LysRS/tRNA complex binds to a gRNA dimer to facilitate tRNA primer release and placement onto the PBS. Future anti-viral strategies that prevent this host factor-gRNA interaction are envisioned.


Assuntos
Soropositividade para HIV , HIV-1 , Lisina-tRNA Ligase , Regiões 5' não Traduzidas , Soropositividade para HIV/genética , HIV-1/genética , HIV-1/metabolismo , Humanos , Lisina-tRNA Ligase/química , Lisina-tRNA Ligase/genética , Conformação de Ácido Nucleico , RNA Guia de Cinetoplastídeos , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA Viral/genética , RNA Viral/metabolismo
4.
J Biol Chem ; 297(4): 101203, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34537243

RESUMO

Aminoacyl-tRNA synthetases (ARSs) catalyze the charging of specific amino acids onto cognate tRNAs, an essential process for protein synthesis. Mutations in ARSs are frequently associated with a variety of human diseases. The human EPRS1 gene encodes a bifunctional glutamyl-prolyl-tRNA synthetase (EPRS) with two catalytic cores and appended domains that contribute to nontranslational functions. In this study, we report compound heterozygous mutations in EPRS1, which lead to amino acid substitutions P14R and E205G in two patients with diabetes and bone diseases. While neither mutation affects tRNA binding or association of EPRS with the multisynthetase complex, E205G in the glutamyl-tRNA synthetase (ERS) region of EPRS is defective in amino acid activation and tRNAGlu charging. The P14R mutation induces a conformational change and altered tRNA charging kinetics in vitro. We propose that the altered catalytic activity and conformational changes in the EPRS variants sensitize patient cells to stress, triggering an increased integrated stress response (ISR) that diminishes cell viability. Indeed, patient-derived cells expressing the compound heterozygous EPRS show heightened induction of the ISR, suggestive of disruptions in protein homeostasis. These results have important implications for understanding ARS-associated human disease mechanisms and development of new therapeutics.


Assuntos
Doenças Ósseas , Diabetes Mellitus , Doenças Genéticas Inatas , Glutamato-tRNA Ligase , Mutação de Sentido Incorreto , Estresse Fisiológico/genética , Substituição de Aminoácidos , Doenças Ósseas/enzimologia , Doenças Ósseas/genética , Diabetes Mellitus/enzimologia , Diabetes Mellitus/genética , Doenças Genéticas Inatas/enzimologia , Doenças Genéticas Inatas/genética , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/genética , Glutamato-tRNA Ligase/metabolismo , Células HEK293 , Humanos , Masculino
6.
J Mol Biol ; 432(4): 913-929, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31945376

RESUMO

Three of six arginine codons (CGU, CGC, and CGA) are decoded by two Escherichia coli tRNAArg isoacceptors. The anticodon stem and loop (ASL) domains of tRNAArg1 and tRNAArg2 both contain inosine and 2-methyladenosine modifications at positions 34 (I34) and 37 (m2A37). tRNAArg1 is also modified from cytidine to 2-thiocytidine at position 32 (s2C32). The s2C32 modification is known to negate wobble codon recognition of the rare CGA codon by an unknown mechanism, while still allowing decoding of CGU and CGC. Substitution of s2C32 for C32 in the Saccharomyces cerevisiae tRNAIleIAU anticodon stem and loop domain (ASL) negates wobble decoding of its synonymous A-ending codon, suggesting that this function of s2C at position 32 is a generalizable property. X-ray crystal structures of variously modified ASLArg1ICG and ASLArg2ICG constructs bound to cognate and wobble codons on the ribosome revealed the disruption of a C32-A38 cross-loop interaction but failed to fully explain the means by which s2C32 restricts I34 wobbling. Computational studies revealed that the adoption of a spatially broad inosine-adenosine base pair at the wobble position of the codon cannot be maintained simultaneously with the canonical ASL U-turn motif. C32-A38 cross-loop interactions are required for stability of the anticodon/codon interaction in the ribosomal A-site.


Assuntos
Códon/genética , Citidina/análogos & derivados , RNA de Transferência/metabolismo , Biologia Computacional , Cristalografia por Raios X , Citidina/metabolismo , Inosina/metabolismo , Nucleosídeos/metabolismo , RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinâmica
7.
ChemMedChem ; 14(7): 758-769, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30707489

RESUMO

The emergence of multidrug-resistant bacteria necessitates the identification of unique targets of intervention and compounds that inhibit their function. Gram-positive bacteria use a well-conserved tRNA-responsive transcriptional regulatory element in mRNAs, known as the T-box, to regulate the transcription of multiple operons that control amino acid metabolism. T-box regulatory elements are found only in the 5'-untranslated region (UTR) of mRNAs of Gram-positive bacteria, not Gram-negative bacteria or the human host. Using the structure of the 5'UTR sequence of the Bacillus subtilis tyrosyl-tRNA synthetase mRNA T-box as a model, in silico docking of 305 000 small compounds initially yielded 700 as potential binders that could inhibit the binding of the tRNA ligand. A single family of compounds inhibited the growth of Gram-positive bacteria, but not Gram-negative bacteria, including drug-resistant clinical isolates at minimum inhibitory concentrations (MIC 16-64 µg mL-1 ). Resistance developed at an extremely low mutational frequency (1.21×10-10 ). At 4 µg mL-1 , the parent compound PKZ18 significantly inhibited in vivo transcription of glycyl-tRNA synthetase mRNA. PKZ18 also inhibited in vivo translation of the S. aureus threonyl-tRNA synthetase protein. PKZ18 bound to the Specifier Loop in vitro (Kd ≈24 µm). Its core chemistry necessary for antibacterial activity has been identified. These findings support the T-box regulatory mechanism as a new target for antibiotic discovery that may impede the emergence of resistance.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , RNA de Transferência/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Antibacterianos/química , Bactérias Gram-Positivas/genética , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , RNA Mensageiro/genética , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
8.
J Mol Biol ; 431(6): 1203-1216, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30731090

RESUMO

Bovine leukemia virus (BLV) is a deltaretrovirus that infects domestic cattle. The structural protein Gag, found in all retroviruses, is a polyprotein comprising three major functional domains: matrix (MA), capsid (CA), and nucleocapsid (NC). Previous studies have shown that both mature BLV MA and NC are able to bind to nucleic acids; however, the viral assembly process and packaging of viral genomic RNA requires full-length Gag to produce infectious particles. Compared to lentiviruses, little is known about the structure of the Gag polyprotein of deltaretroviruses. In this work, structural models of full-length BLV Gag and Gag lacking the MA domain were generated based on previous structural data of individual domains, homology modeling, and flexible fitting to SAXS data using molecular dynamics. The models were used in molecular dynamic simulations to determine the relative mobility of the protein backbone. Functional annealing assays revealed the role of MA in the nucleic acid chaperone activity of BLV Gag. Our results show that full-length BLV Gag has an elongated rod-shaped structure that is relatively rigid, with the exception of the linker between the MA and CA domains. Deletion of the MA domain maintains the elongated structure but alters the rate of BLV Gag-facilitated annealing of two complementary nucleic acids. These data are consistent with a role for the MA domain of retroviral Gag proteins in modulating nucleic acid binding and chaperone activity. IMPORTANCE: BLV is a retrovirus that is found worldwide in domestic cattle. Since BLV infection has serious implications for agriculture, and given its similarities to human retroviruses such as HTLV-1, the development of an effective treatment would have numerous benefits. The Gag polyprotein exists in all retroviruses and is a key player in viral assembly. However, the full-length structure of Gag from any virus has yet to be elucidated at high resolution. This study provides structural data for BLV Gag and could be a starting point for modeling Gag-small molecule interactions with the ultimate goal of developing of a new class of pharmaceuticals.


Assuntos
Bovinos/virologia , Leucose Enzoótica Bovina/virologia , Produtos do Gene gag/química , Vírus da Leucemia Bovina/química , Animais , Modelos Moleculares , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
9.
J Biol Chem ; 293(42): 16261-16276, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30217825

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) is the first retrovirus that has conclusively been shown to cause human diseases. In HIV-1, specific interactions between the nucleocapsid (NC) domain of the Gag protein and genomic RNA (gRNA) mediate gRNA dimerization and selective packaging; however, the mechanism for gRNA packaging in HTLV-1, a deltaretrovirus, is unclear. In other deltaretroviruses, the matrix (MA) and NC domains of Gag are both involved in gRNA packaging, but MA binds nucleic acids with higher affinity and has more robust chaperone activity, suggesting that this domain may play a primary role. Here, we show that the MA domain of HTLV-1, but not the NC domain, binds short hairpin RNAs derived from the putative gRNA packaging signal. RNA probing of the HTLV-1 5' leader and cross-linking studies revealed that the primer-binding site and a region within the putative packaging signal form stable hairpins that interact with MA. In addition to a previously identified palindromic dimerization initiation site (DIS), we identified a new DIS in HTLV-1 gRNA and found that both palindromic sequences bind specifically the NC domain. Surprisingly, a mutant partially defective in dimer formation in vitro exhibited a significant increase in RNA packaging into HTLV-1-like particles, suggesting that efficient RNA dimerization may not be strictly required for RNA packaging in HTLV-1. Moreover, the lifecycle of HTLV-1 and other deltaretroviruses may be characterized by NC and MA functions that are distinct from those of the corresponding HIV-1 proteins, but together provide the functions required for viral replication.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano/química , RNA Viral/metabolismo , Proteínas de Ligação a RNA/química , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Dimerização , Proteínas do Vírus da Imunodeficiência Humana/química , Proteínas do Vírus da Imunodeficiência Humana/genética , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Nucleocapsídeo/genética , Proteínas de Ligação a RNA/fisiologia , Replicação Viral
10.
Nucleic Acids Res ; 46(16): e98, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-29897478

RESUMO

The recent identification and development of RNA-guided enzymes for programmable cleavage of target nucleic acids offers exciting possibilities for both therapeutic and biotechnological applications. However, critical challenges such as expensive guide RNAs and inability to predict the efficiency of target recognition, especially for highly-structured RNAs, remain to be addressed. Here, we introduce a programmable RNA restriction enzyme, based on a budding yeast Argonaute (AGO), programmed with cost-effective 23-nucleotide (nt) single-stranded DNAs as guides. DNA guides offer the advantage that diverse sequences can be easily designed and purchased, enabling high-throughput screening to identify optimal recognition sites in the target RNA. Using this DNA-induced slicing complex (DISC) programmed with 11 different guide DNAs designed to span the sequence, sites of cleavage were identified in the 352-nt human immunodeficiency virus type 1 5'-untranslated region. This assay, coupled with primer extension and capillary electrophoresis, allows detection and relative quantification of all DISC-cleavage sites simultaneously in a single reaction. Comparison between DISC cleavage and RNase H cleavage reveals that DISC not only cleaves solvent-exposed sites, but also sites that become more accessible upon DISC binding. This study demonstrates the advantages of the DISC system for programmable cleavage of highly-structured, functional RNAs.


Assuntos
Proteínas Argonautas/metabolismo , DNA de Cadeia Simples/metabolismo , RNA/metabolismo , Ribonucleases/metabolismo , Regiões 5' não Traduzidas/genética , Sequência de Bases , Sítios de Ligação/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , HIV-1/genética , Humanos , Conformação de Ácido Nucleico , RNA/química , RNA/genética , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Especificidade por Substrato
11.
RNA Biol ; 15(4-5): 576-585, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28737471

RESUMO

Accuracy in protein biosynthesis is maintained through multiple pathways, with a critical checkpoint occurring at the tRNA aminoacylation step catalyzed by aminoacyl-tRNA synthetases (ARSs). In addition to the editing functions inherent to some synthetases, single-domain trans-editing factors, which are structurally homologous to ARS editing domains, have evolved as alternative mechanisms to correct mistakes in aminoacyl-tRNA synthesis. To date, ARS-like trans-editing domains have been shown to act on specific tRNAs that are mischarged with genetically encoded amino acids. However, structurally related non-protein amino acids are ubiquitous in cells and threaten the proteome. Here, we show that a previously uncharacterized homolog of the bacterial prolyl-tRNA synthetase (ProRS) editing domain edits a known ProRS aminoacylation error, Ala-tRNAPro, but displays even more robust editing of tRNAs misaminoacylated with the non-protein amino acid α-aminobutyrate (2-aminobutyrate, Abu) in vitro and in vivo. Our results indicate that editing by trans-editing domains such as ProXp-x studied here may offer advantages to cells, especially under environmental conditions where concentrations of non-protein amino acids may challenge the substrate specificity of ARSs.


Assuntos
Aminoacil-tRNA Sintetases/genética , Aminobutiratos/metabolismo , Prolina/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Transferência de Prolina/genética , Aminoacilação de RNA de Transferência , Alanina/genética , Alanina/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Aminobutiratos/química , Anticódon/química , Anticódon/metabolismo , Sítios de Ligação , Códon/química , Códon/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Simulação de Acoplamento Molecular , Mutação , Conformação de Ácido Nucleico , Prolina/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , RNA de Transferência de Prolina/química , RNA de Transferência de Prolina/metabolismo , Rodopseudomonas/genética , Rodopseudomonas/metabolismo , Especificidade por Substrato
12.
Proc Natl Acad Sci U S A ; 114(33): E6774-E6783, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28768811

RESUMO

Molecular sieves ensure proper pairing of tRNAs and amino acids during aminoacyl-tRNA biosynthesis, thereby avoiding detrimental effects of mistranslation on cell growth and viability. Mischarging errors are often corrected through the activity of specialized editing domains present in some aminoacyl-tRNA synthetases or via single-domain trans-editing proteins. ProXp-ala is a ubiquitous trans-editing enzyme that edits Ala-tRNAPro, the product of Ala mischarging by prolyl-tRNA synthetase, although the structural basis for discrimination between correctly charged Pro-tRNAPro and mischarged Ala-tRNAAla is unclear. Deacylation assays using substrate analogs reveal that size discrimination is only one component of selectivity. We used NMR spectroscopy and sequence conservation to guide extensive site-directed mutagenesis of Caulobacter crescentus ProXp-ala, along with binding and deacylation assays to map specificity determinants. Chemical shift perturbations induced by an uncharged tRNAPro acceptor stem mimic, microhelixPro, or a nonhydrolyzable mischarged Ala-microhelixPro substrate analog identified residues important for binding and deacylation. Backbone 15N NMR relaxation experiments revealed dynamics for a helix flanking the substrate binding site in free ProXp-ala, likely reflecting sampling of open and closed conformations. Dynamics persist on binding to the uncharged microhelix, but are attenuated when the stably mischarged analog is bound. Computational docking and molecular dynamics simulations provide structural context for these findings and predict a role for the substrate primary α-amine group in substrate recognition. Overall, our results illuminate strategies used by a trans-editing domain to ensure acceptance of only mischarged Ala-tRNAPro, including conformational selection by a dynamic helix, size-based exclusion, and optimal positioning of substrate chemical groups.


Assuntos
Aminoacil-tRNA Sintetases/genética , Proteínas de Bactérias/genética , Caulobacter crescentus/genética , Biossíntese de Proteínas/genética , RNA de Transferência de Prolina/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Caulobacter crescentus/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Conformação Proteica , Edição de RNA , RNA de Transferência de Prolina/química , RNA de Transferência de Prolina/metabolismo , Especificidade por Substrato
13.
Methods ; 113: 46-55, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27777026

RESUMO

In addition to their role in correctly attaching specific amino acids to cognate tRNAs, aminoacyl-tRNA synthetases (aaRS) have been found to possess many alternative functions and often bind to and act on other nucleic acids. In contrast to the well-defined 3D structure of tRNA, the structures of many of the other RNAs recognized by aaRSs have not been solved. Despite advances in the use of X-ray crystallography (XRC), nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy (cryo-EM) for structural characterization of biomolecules, significant challenges to solving RNA structures still exist. Recently, small-angle X-ray scattering (SAXS) has been increasingly employed to characterize the 3D structures of RNAs and RNA-protein complexes. SAXS is capable of providing low-resolution tertiary structure information under physiological conditions and with less intensive sample preparation and data analysis requirements than XRC, NMR and cryo-EM. In this article, we describe best practices involved in the process of RNA and RNA-protein sample preparation, SAXS data collection, data analysis, and structural model building.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Escherichia coli/genética , Dobramento de RNA , RNA de Transferência Aminoácido-Específico/química , Aminoacilação de RNA de Transferência , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/genética , Cromatografia em Gel , Escherichia coli/metabolismo , Modelos Moleculares , Eletroforese em Gel de Poliacrilamida Nativa , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , RNA de Transferência Aminoácido-Específico/genética , RNA de Transferência Aminoácido-Específico/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X
14.
RNA ; 23(2): 240-249, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27821510

RESUMO

Chemical and enzymatic probing of RNA secondary structure and RNA/protein interactions provides the basis for understanding the functions of structured RNAs. However, the ability to rapidly perform such experiments using capillary electrophoresis has been hampered by relatively labor-intensive data analysis software. While these computationally robust programs have been shown to calculate residue-specific reactivities to a high degree of accuracy, they often require time-consuming manual intervention and lack the ability to be easily modified by users. To alleviate these issues, RiboCAT (Ribonucleic acid capillary-electrophoresis analysis tool) was developed as a user-friendly, Microsoft Excel-based tool that reduces the need for manual intervention, thereby significantly shortening the time required for data analysis. Features of this tool include (i) the use of an Excel platform, (ii) a method of intercapillary signal alignment using internal size standards, (iii) a peak-sharpening algorithm to more accurately identify peaks, and (iv) an open architecture allowing for simple user intervention. Furthermore, a complementary tool, RiboDOG (RiboCAT data output generator) was designed to facilitate the comparison of multiple data sets, highlighting potential inconsistencies and inaccuracies that may have occurred during analysis. Using these new tools, the secondary structure of the HIV-1 5' untranslated region (5'UTR) was determined using selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE), matching the results of previous work.


Assuntos
Algoritmos , Eletroforese Capilar/estatística & dados numéricos , Sondas de Ácido Nucleico/análise , RNA Viral/análise , Software , Regiões 5' não Traduzidas , Acilação , Pareamento de Bases , Sequência de Bases , HIV-1/química , HIV-1/genética , Conformação de Ácido Nucleico , Sondas de Ácido Nucleico/química , RNA Viral/química
15.
Viruses ; 7(8): 4826-35, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26305251

RESUMO

Two copies of unspliced human immunodeficiency virus (HIV)-1 genomic RNA (gRNA) are preferentially selected for packaging by the group-specific antigen (Gag) polyprotein into progeny virions as a dimer during the late stages of the viral lifecycle. Elucidating the RNA features responsible for selective recognition of the full-length gRNA in the presence of an abundance of other cellular RNAs and spliced viral RNAs remains an area of intense research. The recent nuclear magnetic resonance (NMR) structure by Keane et al. [1] expands upon previous efforts to determine the conformation of the HIV-1 RNA packaging signal. The data support a secondary structure wherein sequences that constitute the major splice donor site are sequestered through base pairing, and a tertiary structure that adopts a tandem 3-way junction motif that exposes the dimerization initiation site and unpaired guanosines for specific recognition by Gag. While it remains to be established whether this structure is conserved in the context of larger RNA constructs or in the dimer, this study serves as the basis for characterizing large RNA structures using novel NMR techniques, and as a major advance toward understanding how the HIV-1 gRNA is selectively packaged.


Assuntos
HIV-1/fisiologia , RNA Viral/química , RNA Viral/metabolismo , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Pareamento de Bases , Humanos , Modelos Biológicos , Modelos Moleculares , Conformação de Ácido Nucleico
16.
Virus Res ; 193: 24-38, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24956407

RESUMO

The field of viral molecular biology has reached a precipice for which pioneering studies on the structure of viral RNAs are beginning to bridge the gap. It has become clear that viral genomic RNAs are not simply carriers of hereditary information, but rather are active players in many critical stages during replication. Indeed, functions such as cap-independent translation initiation mechanisms are, in some cases, primarily driven by RNA structural determinants. Other stages including reverse transcription initiation in retroviruses, nuclear export and viral packaging are specifically dependent on the proper 3-dimensional folding of multiple RNA domains to recruit necessary viral and host factors required for activity. Furthermore, a large-scale conformational change within the 5'-untranslated region of HIV-1 has been proposed to regulate the temporal switch between viral protein synthesis and packaging. These RNA-dependent functions are necessary for replication of many human disease-causing viruses such as severe acute respiratory syndrome (SARS)-associated coronavirus, West Nile virus, and HIV-1. The potential for antiviral development is currently hindered by a poor understanding of RNA-driven molecular mechanisms, resulting from a lack of structural information on large RNAs and ribonucleoprotein complexes. Herein, we describe the recent progress that has been made on characterizing these large RNAs and provide brief descriptions of the techniques that will be at the forefront of future advances. Ongoing and future work will contribute to a more complete understanding of the lifecycles of retroviruses and RNA viruses and potentially lead to novel antiviral strategies.


Assuntos
Tamanho do Genoma , Genoma Viral , RNA Viral/química , RNA Viral/genética , Animais , Humanos , Ligação Proteica , RNA Viral/metabolismo , Sequências Reguladoras de Ácido Nucleico , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Relação Estrutura-Atividade
17.
Proc Natl Acad Sci U S A ; 111(9): 3395-400, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24550473

RESUMO

The most conserved region of the HIV type 1 (HIV-1) genome, the ∼335-nt 5' UTR, is characterized by functional stem loop domains responsible for regulating the viral life cycle. Despite the indispensable nature of this region of the genome in HIV-1 replication, 3D structures of multihairpin domains of the 5' UTR remain unknown. Using small-angle X-ray scattering and molecular dynamics simulations, we generated structural models of the transactivation (TAR)/polyadenylation (polyA), primer-binding site (PBS), and Psi-packaging domains. TAR and polyA form extended, coaxially stacked hairpins, consistent with their high stability and contribution to the pausing of reverse transcription. The Psi domain is extended, with each stem loop exposed for interactions with binding partners. The PBS domain adopts a bent conformation resembling the shape of a tRNA in apo and primer-annealed states. These results provide a structural basis for understanding several key molecular mechanisms underlying HIV-1 replication.


Assuntos
Regiões 5' não Traduzidas/genética , HIV-1/química , Modelos Moleculares , Pareamento de Bases , Sequência de Bases , Cromatografia em Gel , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , RNA de Transferência/química , Espalhamento a Baixo Ângulo
18.
Proc Natl Acad Sci U S A ; 110(27): 10964-9, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23781103

RESUMO

Codon use among the three domains of life is not confined to the universal genetic code. With only 22 tRNA genes in mammalian mitochondria, exceptions from the universal code are necessary for proper translation. A particularly interesting deviation is the decoding of the isoleucine AUA codon as methionine by the one mitochondrial-encoded tRNA(Met). This tRNA decodes AUA and AUG in both the A- and P-sites of the metazoan mitochondrial ribosome. Enrichment of posttranscriptional modifications is a commonly appropriated mechanism for modulating decoding rules, enabling some tRNA functions while restraining others. In this case, a modification of cytidine, 5-formylcytidine (f(5)C), at the wobble position-34 of human mitochondrial tRNA(f5CAU)(Met) (hmtRNA(f5CAU)(Met)) enables expanded decoding of AUA, resulting in a deviation in the genetic code. Visualization of the codon•anticodon interaction by X-ray crystallography revealed that recognition of both A and G at the third position of the codon occurs in the canonical Watson-Crick geometry. A modification-dependent shift in the tautomeric equilibrium toward the rare imino-oxo tautomer of cytidine stabilizes the f(5)C34•A base pair geometry with two hydrogen bonds.


Assuntos
Códon/química , Códon/genética , RNA de Transferência/química , RNA de Transferência/genética , Pareamento de Bases , Cristalografia por Raios X , Citidina/análogos & derivados , Citidina/química , Humanos , Isomerismo , Modelos Moleculares , Conformação de Ácido Nucleico , RNA de Transferência de Metionina/química , RNA de Transferência de Metionina/genética
19.
J Mol Biol ; 416(4): 467-85, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22227389

RESUMO

Human tRNA(Lys3)(UUU) (htRNA(Lys3)(UUU)) decodes the lysine codons AAA and AAG during translation and also plays a crucial role as the primer for HIV-1 (human immunodeficiency virus type 1) reverse transcription. The posttranscriptional modifications 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U(34)), 2-methylthio-N(6)-threonylcarbamoyladenosine (ms(2)t(6)A(37)), and pseudouridine (Ψ(39)) in the tRNA's anticodon domain are critical for ribosomal binding and HIV-1 reverse transcription. To understand the importance of modified nucleoside contributions, we determined the structure and function of this tRNA's anticodon stem and loop (ASL) domain with these modifications at positions 34, 37, and 39, respectively (hASL(Lys3)(UUU)-mcm(5)s(2)U(34);ms(2)t(6)A(37);Ψ(39)). Ribosome binding assays in vitro revealed that the hASL(Lys3)(UUU)-mcm(5)s(2)U(34);ms(2)t(6)A(37);Ψ(39) bound AAA and AAG codons, whereas binding of the unmodified ASL(Lys3)(UUU) was barely detectable. The UV hyperchromicity, the circular dichroism, and the structural analyses indicated that Ψ(39) enhanced the thermodynamic stability of the ASL through base stacking while ms(2)t(6)A(37) restrained the anticodon to adopt an open loop conformation that is required for ribosomal binding. The NMR-restrained molecular-dynamics-derived solution structure revealed that the modifications provided an open, ordered loop for codon binding. The crystal structures of the hASL(Lys3)(UUU)-mcm(5)s(2)U(34);ms(2)t(6)A(37);Ψ(39) bound to the 30S ribosomal subunit with each codon in the A site showed that the modified nucleotides mcm(5)s(2)U(34) and ms(2)t(6)A(37) participate in the stability of the anticodon-codon interaction. Importantly, the mcm(5)s(2)U(34)·G(3) wobble base pair is in the Watson-Crick geometry, requiring unusual hydrogen bonding to G in which mcm(5)s(2)U(34) must shift from the keto to the enol form. The results unambiguously demonstrate that modifications pre-structure the anticodon as a key prerequisite for efficient and accurate recognition of cognate and wobble codons.


Assuntos
Códon/química , RNA de Transferência de Lisina/química , Anticódon/química , Pareamento de Bases , Dicroísmo Circular , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico , Pseudouridina/química , Termodinâmica , Tiouridina/análogos & derivados , Tiouridina/química
20.
J Mol Biol ; 416(4): 579-97, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22240457

RESUMO

Three of six arginine codons are read by two tRNA(Arg) isoacceptors in Escherichia coli. The anticodon stem and loop of these isoacceptors (ASL(Arg1,2)) differs only in that the position 32 cytidine of tRNA(Arg1) is posttranscriptionally modified to 2-thiocytidine (s(2)C(32)). The tRNA(Arg1,2) are also modified at positions 34 (inosine, I(34)) and 37 (2-methyladenosine, m(2)A(37)). To investigate the roles of modifications in the structure and function, we analyzed six ASL(Arg1,2) constructs differing in their array of modifications by spectroscopy and codon binding assays. Thermal denaturation and circular dichroism spectroscopy indicated that modifications contribute thermodynamic and base stacking properties, resulting in more order but less stability. NMR-derived structures of the ASL(Arg1,2) showed that the solution structures of the ASLs were nearly identical. Surprisingly, none possessed the U-turn conformation required for effective codon binding on the ribosome. Yet, all ASL(Arg1,2) constructs efficiently bound the cognate CGU codon. Three ASLs with I(34) were able to decode CGC, whereas only the singly modified ASL(Arg1,2)(ICG) with I(34) was able to decode CGA. The dissociation constants for all codon bindings were physiologically relevant (0.4-1.4 µM). However, with the introduction of s(2)C(32) or m(2)A(37) to ASL(Arg1,2)(ICG), the maximum amount of ASL bound to CGU and CGC was significantly reduced. These results suggest that, by allowing loop flexibility, the modifications modulate the conformation of the ASL(Arg1,2), which takes one structure free in solution and two others when bound to the cognate arginyl-tRNA synthetase or to codons on the ribosome where modifications reduce or restrict binding to specific codons.


Assuntos
Anticódon/química , Códon/química , Escherichia coli/metabolismo , RNA de Transferência de Arginina/química , Pareamento de Bases , Sítios de Ligação , Dicroísmo Circular , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Escherichia coli/química , Conformação de Ácido Nucleico , Conformação Proteica , Isoformas de Proteínas/química , Processamento de Proteína Pós-Traducional , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA