Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nat Commun ; 14(1): 8221, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102107

RESUMO

Serotonergic psychedelics possess considerable therapeutic potential. Although 5-HT2A receptor activation mediates psychedelic effects, prototypical psychedelics activate both 5-HT2A-Gq/11 and ß-arrestin2 transducers, making their respective roles unclear. To elucidate this, we develop a series of 5-HT2A-selective ligands with varying Gq efficacies, including ß-arrestin-biased ligands. We show that 5-HT2A-Gq but not 5-HT2A-ß-arrestin2 recruitment efficacy predicts psychedelic potential, assessed using head-twitch response (HTR) magnitude in male mice. We further show that disrupting Gq-PLC signaling attenuates the HTR and a threshold level of Gq activation is required to induce psychedelic-like effects, consistent with the fact that certain 5-HT2A partial agonists (e.g., lisuride) are non-psychedelic. Understanding the role of 5-HT2A Gq-efficacy in psychedelic-like psychopharmacology permits rational development of non-psychedelic 5-HT2A agonists. We also demonstrate that ß-arrestin-biased 5-HT2A receptor agonists block psychedelic effects and induce receptor downregulation and tachyphylaxis. Overall, 5-HT2A receptor Gq-signaling can be fine-tuned to generate ligands distinct from classical psychedelics.


Assuntos
Alucinógenos , Masculino , Animais , Camundongos , Alucinógenos/farmacologia , Receptor 5-HT2A de Serotonina , Serotonina , Transdução de Sinais , beta-Arrestinas , Ligantes
2.
bioRxiv ; 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37577474

RESUMO

Serotonergic psychedelics possess considerable therapeutic potential. Although 5-HT2A receptor activation mediates psychedelic effects, prototypical psychedelics activate both 5-HT2A-Gq/11 and ß-arrestin2 signaling, making their respective roles unclear. To elucidate this, we developed a series of 5-HT2A-selective ligands with varying Gq efficacies, including ß-arrestin-biased ligands. We show that 5-HT2A-Gq but not 5-HT2A-ß-arrestin2 efficacy predicts psychedelic potential, assessed using head-twitch response (HTR) magnitude in male mice. We further show that disrupting Gq-PLC signaling attenuates the HTR and a threshold level of Gq activation is required to induce psychedelic-like effects, consistent with the fact that certain 5-HT2A partial agonists (e.g., lisuride) are non-psychedelic. Understanding the role of 5-HT2A-Gq efficacy in psychedelic-like psychopharmacology permits rational development of non-psychedelic 5-HT2A agonists. We also demonstrate that ß-arrestin-biased 5-HT2A receptor agonists induce receptor downregulation and tachyphylaxis, and have an anti-psychotic-like behavioral profile. Overall, 5-HT2A receptor signaling can be fine-tuned to generate ligands with properties distinct from classical psychedelics.

3.
Pharmaceuticals (Basel) ; 16(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37242535

RESUMO

Anticipating and understanding cancers' need for specific gene activities is key for novel therapeutic development. Here we utilized DepMap, a cancer gene dependency screen, to demonstrate that machine learning combined with network biology can produce robust algorithms that both predict what genes a cancer is dependent on and what network features coordinate such gene dependencies. Using network topology and biological annotations, we constructed four groups of novel engineered machine learning features that produced high accuracies when predicting binary gene dependencies. We found that in all examined cancer types, F1 scores were greater than 0.90, and model accuracy remained robust under multiple hyperparameter tests. We then deconstructed these models to identify tumor type-specific coordinators of gene dependency and identified that in certain cancers, such as thyroid and kidney, tumors' dependencies are highly predicted by gene connectivity. In contrast, other histologies relied on pathway-based features such as lung, where gene dependencies were highly predictive by associations with cell death pathway genes. In sum, we show that biologically informed network features can be a valuable and robust addition to predictive pharmacology models while simultaneously providing mechanistic insights.

4.
Cell Rep ; 42(3): 112203, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36884348

RESUMO

Hallucinations limit widespread therapeutic use of psychedelics as rapidly acting antidepressants. Here we profiled the non-hallucinogenic lysergic acid diethylamide (LSD) analog 2-bromo-LSD (2-Br-LSD) at more than 33 aminergic G protein-coupled receptors (GPCRs). 2-Br-LSD shows partial agonism at several aminergic GPCRs, including 5-HT2A, and does not induce the head-twitch response (HTR) in mice, supporting its classification as a non-hallucinogenic 5-HT2A partial agonist. Unlike LSD, 2-Br-LSD lacks 5-HT2B agonism, an effect linked to cardiac valvulopathy. Additionally, 2-Br-LSD produces weak 5-HT2A ß-arrestin recruitment and internalization in vitro and does not induce tolerance in vivo after repeated administration. 2-Br-LSD induces dendritogenesis and spinogenesis in cultured rat cortical neurons and increases active coping behavior in mice, an effect blocked by the 5-HT2A-selective antagonist volinanserin (M100907). 2-Br-LSD also reverses the behavioral effects of chronic stress. Overall, 2-Br-LSD has an improved pharmacological profile compared with LSD and may have profound therapeutic value for mood disorders and other indications.


Assuntos
Alucinógenos , Dietilamida do Ácido Lisérgico , Ratos , Camundongos , Animais , Dietilamida do Ácido Lisérgico/farmacologia , Dietilamida do Ácido Lisérgico/uso terapêutico , Serotonina , Alucinógenos/farmacologia , Alucinógenos/uso terapêutico , Piperidinas/farmacologia
5.
ACS Chem Neurosci ; 14(1): 119-135, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36521179

RESUMO

Ariadne is a non-hallucinogenic analog in the phenylalkylamine chemical class of psychedelics that is closely related to an established synthetic hallucinogen, 2,5-dimethoxy-4-methyl-amphetamine (DOM), differing only by one methylene group in the α-position to the amine. Ariadne has been tested in humans including clinical trials at Bristol-Myers Company that indicate a lack of hallucinogenic effects and remarkable therapeutic effects, such as rapid remission of psychotic symptoms in schizophrenics, relaxation in catatonics, complete remission of symptoms in Parkinson's disease (PD), and improved cognition in geriatric subjects. Despite these provocative clinical results, the compound has been abandoned as a drug candidate and its molecular pharmacology remained unknown. Here, we report a detailed examination of the in vitro and in vivo pharmacology of Ariadne and its analogs, and propose a molecular hypothesis for the lack of hallucinogenic effects and the therapeutic potential of this compound class. We also provide a summary of previous clinical and preclinical results to contextualize the molecular signaling data. Our results show that Ariadne is a serotonin 5-HT2 receptor agonist, exhibits modest selectivity over 5-HT1 receptors, has no relevant activity at 5-HT4,5,7 and other aminergic receptors, and no substantial affinity at plasma membrane monoamine transporters. Compared to DOM, Ariadne shows lower signaling potency and efficacy in multiple signaling pathways examined (Gq, G11, and ß-arrestin2) coupled to 5-HT2A receptors. We confirmed the shift in signaling for an α-propyl analog and provide a molecular docking rationale for the progressive decrease in signaling potency with the growing length of the α-substituent. Ariadne versus DOM exhibits no apparent change in the relative preference between Gq/11 activation and ß-arrestin2 recruitment; instead, there is a small but consistent drop in efficacy in these signaling channels. Ariadne acts as a 5-HT2A agonist in vivo in mice and shows markedly attenuated head twitch response (HTR) in comparison to its hallucinogenic analogs, consistent with previous studies in rabbits, cats, and dogs. Hence, we propose the lower 5-HT2A receptor signaling efficacy of this compound class as an explanatory model for the lack of hallucinogenic effects of Ariadne in humans and the dramatically attenuated hallucinosis-like effects in animals (5-HT2A signaling efficacy hypothesis). In terms of reverse translation of the noted clinical therapeutic effects, we used an auxilin knockout model of Parkinson's disease where Ariadne rescued severe motor deficits in this mouse line, on par with the effects of l-DOPA, a notable finding considering Ariadne's lack of activity at dopamine receptors and transporters. Ariadne emerges as a prototype of a new drug class, non-hallucinogenic 5-HT2A agonists, with considerable therapeutic potential across psychiatric and neurological indications.


Assuntos
Alucinógenos , Doença de Parkinson , Humanos , Camundongos , Animais , Coelhos , Cães , Idoso , Serotonina , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Simulação de Acoplamento Molecular , Alucinógenos/farmacologia , Alucinógenos/química , Agonistas do Receptor de Serotonina/farmacologia , Receptor 5-HT2A de Serotonina
6.
Clin Biomech (Bristol, Avon) ; 101: 105828, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455401

RESUMO

BACKGROUND: Skeletally mature rodents are frequently used in studies of bone health and bone healing, some of them requiring longitudinal observations that span a significant portion of the animals' adulthood. However, changes in whole bone mechanics associated with the natural aging of adult rats have not been extensively characterized. METHODS: Femurs from skeletally mature Wistar rats in three age groups of 24-week (young adult), 39-week (middle-age), and 54-week (late middle-age) were tested under three-point bending load in the anterior-posterior direction. Mechanical properties and geometric properties of the femurs from the two older groups were compared to the 24-week rats. FINDINGS: Significantly greater strength, rigidity, and post-yield deformation were found in the 54-week group when compared to the 24-week group. The oldest group also demonstrated greater leg length, anteroposterior width, and cross-sectional moment of inertia over the youngest group. Of the intrinsic properties, the highest ultimate stress was found in the 39-week and was significantly higher than the 24-week group. The ultimate strain increased with age, and the difference between the youngest and the oldest group was statistically significant. INTERPRETATION: The results suggest that femoral bending properties and geometric properties are continually modified from young adult to late-middle-aged animals. Knowing the baseline bone strength and rigidity throughout adulthood of a rodent breed helps guide animal selection in study design.


Assuntos
Osso e Ossos , Fêmur , Ratos , Animais , Ratos Wistar , Estudos Transversais , Extremidade Inferior , Fenômenos Biomecânicos , Densidade Óssea
7.
ACS Med Chem Lett ; 13(4): 648-657, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35450369

RESUMO

The serotonin 5-HT2 receptors are important pharmaceutical targets involved in signaling pathways underlying various neurological, psychiatric, and cardiac functions and dysfunctions. As such, numerous ligands for the investigation of these receptors' activity and downstream effects have been developed synthetically or discovered in nature. For example, the heteroyohimbine natural product alstonine exhibits antispychotic activity mediated by 5-HT2A/2C agonism. In this work, we identified a heteroyohimbine metabolite containing a serotonin pharmacophore and truncated the scaffold, leading to the discovery of potent agonist activity of substituted tetrahydro-ß-carbolines across the 5-HT2 receptor family. Extensive SAR development resulted in compound 106 with EC50 values of 1.7, 0.58, and 0.50 nM at 5-HT2A, 5-HT2B, and 5-HT2C, respectively. Docking studies suggest a π-stacking interaction between the tetrahydro-ß-carboline core and conserved residue Trp6.48 as the structural basis for this activity. This work lays a foundation for future investigation of these compounds in neurological and psychiatric disorders.

8.
Can Med Educ J ; 12(4): 65-69, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34567306

RESUMO

PURPOSE: Though prior literature has shown that virtual conferences improve accessibility and provide a comparable educational experience, further research is required to characterize their educational value. METHODS: In this repeated cross-sectional study, demographic and survey data were compared between attendance perspectives for the in-person student-led internal medicine conference held in 2019 and subsequent virtual conference held in 2020. RESULTS: There were 146 attendees at the in-person conference and 200 attendees at the online conference, in which 32 (22% response rate) and 52 responses (26% response rate) were gathered, respectively. Comparison of Likert Scale data via Mann-Whitney U Test revealed that learning objectives were better met in-person for the overall conference (p < 0.01) and didactic sessions (p < .05), but not for workshops, in which there was no significant difference. Survey takers noted the virtual conference to be more accessible on multiple factors, but felt as though their potential for interaction with other participants was more limited. CONCLUSIONS: Results indicate that though the virtual conference appeared more accessible to attendees, overall learning objectives for the conference and didactic sessions were better met in-person. Interestingly however, there was no observed difference in perceived educational value for small group workshops.


OBJECTIF: Bien que la littérature existante montre que les conférences virtuelles améliorent l'accessibilité et offrent une expérience éducative comparable à celles qui sont tenues en personne, des recherches plus approfondies s'imposent pour mieux qualifier leur valeur éducative. MÉTHODES: Dans cette étude transversale répétée, on compare les données démographiques et les données d'enquête concernant la perception des participants à une conférence en médecine interne tenue par des étudiants dans un lieu physique en 2019 et les données analogues concernant une conférence virtuelle qui s'est tenue en 2020. RÉSULTATS: Des 146 participants à la conférence en personne, 32 ont répondu au sondage (taux de réponse de 22 %); parmi les 200 participants à la conférence en ligne, les répondants étaient au nombre de 52 (taux de réponse de 26 %). Les données recueillies selon une échelle de Likert ont été comparées par le biais du test U de Mann-Whitney. Le résultat montre que tandis que les objectifs d'apprentissage étaient mieux atteints lors de la participation en personne pour la conférence en général (p <0,01) et les séances didactiques (p <0,05), pour les ateliers, il n'y avait pas de différence significative. Les participants à l'enquête ont noté que la conférence virtuelle était plus accessible à divers niveaux, mais ils ont trouvé que la possibilité d'interagir avec les autres participants y était plus limitée qu'à la conférence tenue en personne. CONCLUSIONS: D'après les résultats, bien que la conférence virtuelle ait semblé plus accessible aux participants, les objectifs d'apprentissage généraux pour la conférence et les séances didactiques ont été mieux atteints en personne. Il est toutefois intéressant de noter qu'aucune différence n'a été relevée en ce qui concerne la valeur éducative perçue des ateliers en petits groupes.

9.
Am J Physiol Cell Physiol ; 317(5): C894-C899, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31509447

RESUMO

Statins are a cholesterol-lowering drug class that significantly reduce cardiovascular disease risk. Despite their safety and effectiveness, musculoskeletal side-effects, particularly myalgia, are prominent and the most common reason for discontinuance. The cause of statin-induced myalgia is unknown, so defining the underlying mechanism(s) and potential therapeutic strategies is of clinical importance. Here we tested the hypothesis that statin administration activates skeletal muscle system xC-, a cystine/glutamate antiporter, to increase intracellular cysteine and therefore glutathione synthesis to attenuate statin-induced oxidative stress. Increased system xC- activity would increase interstitial glutamate; an amino acid associated with peripheral nociception. Consistent with our hypothesis, atorvastatin treatment significantly increased mitochondrial reactive oxygen species (ROS; 41%) and glutamate efflux (up to 122%) in C2C12 mouse skeletal muscle myotubes. Statin-induced glutamate efflux was confirmed to be the result of system xC- activation, as cotreatment with sulfasalazine (system xC- inhibitor) negated this rise in extracellular glutamate. These findings were reproduced in primary human myotubes but, consistent with being muscle-specific, were not observed in primary human dermal fibroblasts. To further demonstrate that statin-induced increases in ROS triggered glutamate efflux, C2C12 myotubes were cotreated with atorvastatin and various antioxidants. α-Tocopherol and cysteamine bitartrate reversed the increase in statin-induced glutamate efflux, bringing glutamate levels between 50 and 92% of control-treated levels. N-acetylcysteine (a system xC- substrate) increased glutamate efflux above statin treatment alone: up to 732% greater than control treatment. Taken together, we provide a mechanistic foundation for statin-induced myalgia and offer therapeutic insights to alleviate this particular statin-associated side-effect.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Mialgia/induzido quimicamente , Mialgia/metabolismo , Animais , Atorvastatina/efeitos adversos , Atorvastatina/farmacologia , Linhagem Celular , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Camundongos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo
10.
Microbiol Resour Announc ; 8(32)2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395631

RESUMO

We present here the complete genomes of two Streptomyces bacteriophages, Satis and JustBecause. Both phages were isolated directly from soil samples collected in St. Louis, MO, and present with an unusual prolate head morphology and large genome lengths of over 180 kb.

11.
J Cachexia Sarcopenia Muscle ; 10(3): 643-661, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30938481

RESUMO

BACKGROUND: Muscle wasting and weakness in Duchenne muscular dystrophy (DMD) causes severe locomotor limitations and early death due in part to respiratory muscle failure. Given that current clinical practice focuses on treating secondary complications in this genetic disease, there is a clear need to identify additional contributions in the aetiology of this myopathy for knowledge-guided therapy development. Here, we address the unresolved question of whether the complex impairments observed in DMD are linked to elevated mitochondrial H2 O2 emission in conjunction with impaired oxidative phosphorylation. This study performed a systematic evaluation of the nature and degree of mitochondrial-derived H2 O2 emission and mitochondrial oxidative dysfunction in a mouse model of DMD by designing in vitro bioenergetic assessments that attempt to mimic in vivo conditions known to be critical for the regulation of mitochondrial bioenergetics. METHODS: Mitochondrial bioenergetics were compared with functional and histopathological indices of myopathy early in DMD (4 weeks) in D2.B10-DMDmdx /2J mice (D2.mdx)-a model that demonstrates severe muscle weakness. Adenosine diphosphate's (ADP's) central effect of attenuating H2 O2 emission while stimulating respiration was compared under two models of mitochondrial-cytoplasmic phosphate exchange (creatine independent and dependent) in muscles that stained positive for membrane damage (diaphragm, quadriceps, and white gastrocnemius). RESULTS: Pathway-specific analyses revealed that Complex I-supported maximal H2 O2 emission was elevated concurrent with a reduced ability of ADP to attenuate emission during respiration in all three muscles (mH2 O2 : +17 to +197% in D2.mdx vs. wild type). This was associated with an impaired ability of ADP to stimulate respiration at sub-maximal and maximal kinetics (-17 to -72% in D2.mdx vs. wild type), as well as a loss of creatine-dependent mitochondrial phosphate shuttling in diaphragm and quadriceps. These changes largely occurred independent of mitochondrial density or abundance of respiratory chain complexes, except for quadriceps. This muscle was also the only one exhibiting decreased calcium retention capacity, which indicates increased sensitivity to calcium-induced permeability transition pore opening. Increased H2 O2 emission was accompanied by a compensatory increase in total glutathione, while oxidative stress markers were unchanged. Mitochondrial bioenergetic dysfunctions were associated with induction of mitochondrial-linked caspase 9, necrosis, and markers of atrophy in some muscles as well as reduced hindlimb torque and reduced respiratory muscle function. CONCLUSIONS: These results provide evidence that Complex I dysfunction and loss of central respiratory control by ADP and creatine cause elevated oxidant generation during impaired oxidative phosphorylation. These dysfunctions may contribute to early stage disease pathophysiology and support the growing notion that mitochondria are a potential therapeutic target in this disease.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/patologia , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Animais , Modelos Animais de Doenças , Metabolismo Energético , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/citologia , Distrofia Muscular de Duchenne/genética , Oxirredução , Fosforilação Oxidativa , Estresse Oxidativo
12.
Biochem Biophys Res Commun ; 495(1): 499-505, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29127005

RESUMO

The capacity for skeletal muscle to repair from daily insults as well as larger injuries is a vital component to maintaining muscle health over our lifetime. Given the importance of skeletal muscle for our physical and metabolic well-being, identifying novel factors mediating the growth and repair of skeletal muscle will thus build our foundational knowledge and help lead to potential therapeutic avenues for muscle wasting disorders. To that end, we investigated the expression of T-cell death associated gene 51 (TDAG51) during skeletal muscle repair and studied the response of TDAG51 deficient (TDAG51-/-) mice to chemically-induced muscle damage. TDAG51 mRNA and protein expression within uninjured skeletal muscle is almost undetectable but, in response to chemically-induced muscle damage, protein levels increase by 5 days post-injury and remain elevated for up to 10 days of regeneration. To determine the impact of TDAG51 deletion on skeletal muscle form and function, we compared adult male TDAG51-/- mice with age-matched wild-type (WT) mice. Body and muscle mass were not different between the two groups, however, in situ muscle testing demonstrated a significant reduction in force production both before and after fatiguing contractions in TDAG51-/- mice. During the early phases of the regenerative process (5 days post-injury), TDAG51-/- muscles display a significantly larger area of degenerating muscle tissue concomitant with significantly less regenerating area compared to WT (as demonstrated by embryonic myosin heavy chain expression). Despite these early deficits in regeneration, TDAG51-/- muscles displayed no morphological deficits by 10 days post injury compared to WT mice. Taken together, the data presented herein demonstrate TDAG51 expression to be upregulated in damaged skeletal muscle and its absence attenuates the early phases of muscle regeneration.


Assuntos
Deleção de Genes , Músculo Esquelético/fisiologia , Regeneração , Fatores de Transcrição/genética , Regulação para Cima , Animais , Linhagem Celular , Masculino , Camundongos Endogâmicos C57BL , Fadiga Muscular , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , RNA Mensageiro/genética , Fatores de Transcrição/metabolismo
13.
Front Physiol ; 8: 1088, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29311999

RESUMO

Those with diabetes invariably develop complications including cardiovascular disease (CVD). To reduce their CVD risk, diabetics are generally prescribed cholesterol-lowering 3-hydroxy-methylglutaryl coenzyme A reductase inhibitors (i.e., statins). Statins inhibit cholesterol biosynthesis, but also reduce the synthesis of a number of mevalonate pathway intermediates, leading to several cholesterol-independent effects. One of the pleiotropic effects of statins is the reduction of the anti-fibrinolytic hormone plasminogen activator inhibitor-1 (PAI-1). We have previously demonstrated that a PAI-1 specific inhibitor alleviated diabetes-induced delays in skin and muscle repair. Here we tested if statin administration, through its pleiotropic effects on PAI-1, could improve skin and muscle repair in a diabetic rodent model. Six weeks after diabetes onset, adult male streptozotocin-induced diabetic (STZ), and WT mice were assigned to receive control chow or a diet enriched with 600 mg/kg Fluvastatin. Tibialis anterior muscles were injured via Cardiotoxin injection to induce skeletal muscle injury. Punch biopsies were administered on the dorsal scapular region to induce injury of skin. Twenty-four days after the onset of statin therapy (10 days post-injury), tissues were harvested and analyzed. PAI-1 levels were attenuated in statin-treated diabetic tissue when compared to control-treated tissue, however no differences were observed in non-diabetic tissue as a result of treatment. Muscle and skin repair were significantly attenuated in Fluvastatin-treated STZ-diabetic mice as demonstrated by larger wound areas, less mature granulation tissue, and an increased presence of smaller regenerating muscle fibers. Despite attenuating PAI-1 levels in diabetic tissue, Fluvastatin treatment impaired cutaneous healing and skeletal muscle repair in STZ-diabetic mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA