RESUMO
The purpose of this paper is to develop a self-detecting diaphragm integrated with a flexible sensor, which is utilized in an underwater thruster. Resistive strain sensors are easy to manufacture and integrate due to their advantages in reliable stretchability and ductility. Inspired by the structure of neurons, we fabricated resistive flexible sensors using silica gel as the matrix with carbon black and carbon nanotubes as additives. All fabricated sensors demonstrated positive resistance characteristics under 60% strain conditions, with the sensor containing a mass ratio of 9 wt % carbon black and carbon nanotubes exhibiting the best resistance-strain linearity. To verify the anti-interference capability of sensors with silica gel substrates of varying hardness values under changing environmental pressure, we tested the pressure sensitivity of the sensors by altering the hardness of the silica gel. The results indicate that silica gel with the highest hardness value provides the best resistance to environmental pressure interference. To detect the motion and deformation of the internal functional components of the thruster, we combined strain detection with the movement operation function of a silica gel diaphragm, resulting in a new integrated diaphragm with sensor detection capabilities. The integrated diaphragm was evaluated by using a tensile testing machine and an LCR tester. The results demonstrate that the mechanical properties of the diaphragm are stable, exhibiting reliable resistance characteristics and a sensitive response during underwater operation. This research can also be applied to the detection of motion amplitudes of other types of soft robots.
RESUMO
BACKGROUND: Thrombocytopenia is commonly observed in patients with sepsis and is an independent risk factor for poor prognosis. However, the changes of platelet count caused by different pathogens can vary significantly. Our study aims to evaluate the quantitative changes in platelet count in response to various pathogens. MATERIAL AND METHODS: We retrospectively analysed data of 3044 patients with sepsis from Medical Information Mart for Intensive Care (MIMIC, 2008-2019) database and prospectively collected data of 364 patients with sepsis from our local cohort of the Shandong Bloodstream Infection and Sepsis Collaboration Study (SBISC, 2020-2022). Propensity score matching (PSM) was employed to control for baseline differences in variables, except for the causative pathogen. RESULTS: Multivariate logistic analyses of both original and PSM populations identified Candida, Escherichia, Klebsiella, and Serratia species posing a higher risk for thrombocytopenia compared to others. Restricted cubic spline (RCS) curves showed L- or U-shaped associations between platelet count and 28-mortality with various cut-off values among different pathogens: ranging from 96 × 109/L in Candida species - 190 × 109/L in Klebsiella species. CONCLUSION: Our present findings indicate a pathogen-specific effect on platelet count, highlighting the importance of monitoring thrombocytopenia in patients infected with above microorganisms. Clinicians need to consider pathogen-specific thresholds when intervene on platelet count.
This study validated the differential incidence of thrombocytopenia among various pathogens within two distinct populations.Candida, Escherichia, Klebsiella, and Serratia species were identified as having a notably higher risk of causing thrombocytopenia compared to other pathogens.We observed L- or U-shaped relationships between platelet counts and 28-day mortality in Candida species, Enterococcus species, Escherichia species, Enterobacter species, Staphylococcus species, and Klebsiella species with platelet count cutoff values of 96 × 109/L, 100 × 109/L, 100 × 109/L, 146 × 109/L, 152 × 109/L, and 190 × 109/L, respectively.
Assuntos
Sepse , Trombocitopenia , Humanos , Masculino , Feminino , Sepse/sangue , Sepse/microbiologia , Estudos Retrospectivos , Contagem de Plaquetas , Pessoa de Meia-Idade , Trombocitopenia/sangue , Trombocitopenia/microbiologia , Idoso , Estudos Prospectivos , Klebsiella/isolamento & purificação , Fatores de Risco , Candida/isolamento & purificação , Serratia/isolamento & purificação , Pontuação de PropensãoRESUMO
In this study, constructed wetland-microbial fuel cell (CW-MFC) filled with modified basalt fiber (MBF) via iron modification was utilized for treating perfluorooctanoic acid (PFOA) containing sewage. Results showed the significant promotion by bioelectricity on ammonium and total nitrogen by 7.80-8.14 %. Although such enhancement was suppressed by PFOA, higher removal was still observed with closed circuit, and PFOA removal also increased by 9.05 %. Bioelectricity contributed to enrichment of bacteria involved in nitrifying (Nitrospira and Ellin6067), denitrifying (like Thauera and Dechloromonas), iron redox (Geobacter), and sulfate-reducing (Desulfobacter), aligned with up-regulated of functional genes, including amoA, narG , napA, narK, narS, nrfA, sulp and sqr. Enrichment of autohydrogenotrophic and sulfide-oxidizing autotrophic denitrifiers, and nitrate dependent iron oxidation bacteria by bioelectricity all promoted denitrification. Moreover, bioelectricity boosted relative abundance of organic compounds degradation enzymes, such as dehydrogenase, decarboxylase, and dehalogenase, supporting the enhancement on PFOA removal. Generally, PFOA was converted to short-chain perfluorocarboxylic acids (PFCAs) via decarboxylation, hydroxylation, HF elimination, hydrolysis, F- elimination, C-C bond scission, and dehydration in CW-MFC. The final PFCAs-products determined was perfluorobutyric acid. This work estimated feasibility of treating PFOA containing sewage by CM-MFC, and offered new insights on enhancing mechanisms of nitrogen and PFOA conversion.
RESUMO
The first investigation based on constructed wetlands coupled with modified basalt fiber bio-nest (MBF-CWs) was performed under exposure of short- and long-chain perfluorocarboxylic acids (PFCAs). In general, both perfluorooctanoic acid (PFOA) and perfluorobutanoic acid (PFBA) caused significant decline of chemical oxygen demand removal by 10.83 % and 4.73 %. However, only PFOA led to marked inhibition on total phosphorus removal by 12.51 % in whole duration. Suppression of removal performance resulted from side impacts on microbes by PFOA. For instance, activities of key enzymes like dehydrogenase (DHA), urease (URE), and phosphatase (PST) decreased by 52.77 %, 40.70 %, and 56.94 % in maximum under PFOA stress, while URE could alleviate over time. By contrast, distinct inhibition was only found on PST in later phases with PFBA exposure. PFCAs had adverse influence on alpha diversity of MBF-CWs, particularly long-chain PFOA. Both PFCAs caused enrichment of Proteobacteria, owing to increase of Gammaproteobacteria and Plasticicumulans by 22.04-35.79 % and 22.91-219.77 %. Nevertheless, some dominant phyla (like Bacteroidota and Acidobacteriota) and genera (like SC-I-84, Thauera, Subgroup_10, and Ellin6067) were only suppressed by PFOA, causing more hazards to microbial decontamination than PFBA did. As for plants, chlorophyll contents tend to decrease with PFOA treatment. Whereas, higher antioxidase activities and more lipid peroxidation products were uncovered in PFOA group, demonstrating more reactive oxygen species brought by long-chain PFCAs. This work offered new findings about ecological effects of MBF-CWs under PFCAs exposure, evaluating stability and sustainability of MBF-CW systems to treat sewage containing complex PFCAs.
Assuntos
Caprilatos , Fluorocarbonos , Poluentes Químicos da Água , Áreas Alagadas , Fluorocarbonos/metabolismo , Caprilatos/metabolismo , Poluentes Químicos da Água/metabolismo , Fósforo/metabolismo , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental , Análise da Demanda Biológica de OxigênioRESUMO
BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) infection causes severe inflammatory response, respiratory disease and sow reproductive failure. Quercetin is among the widely occurring polypheno found abundantly in nature. Quercetin has anti-inflammatory, anti-oxidative and anti-viral properties. OBJECTIVES: This study aimed to explore the effect and mechanism of quercetin on PRRSV-induced inflammation in MARC-145 cells. METHODS: Observing the cytopathic effect and measurements of inflammatory markers in MARC-145 cells collectively demonstrate that quercetin elicits a curative effect on PRRSV-induced inflammation. Liquid chromatography-mass spectrometry was further used for a non-targeted metabolic analysis of the role of quercetin in the metabolic regulation of PRRSV inflammation in MARC-145 cells. RESULTS: It was shown that quercetin attenuated PRRSV-induced cytopathy in MARC-145 cells. Quercetin treatment inhibited PRRSV replication in MARC-145 cells in a dose-dependent manner. We also found that quercetin inhibited PRRSV-induced mRNA expression and secretion levels of tumour necrosis factor-α, interleukin 1ß and interleukin 6. Metabolomics analysis revealed that quercetin ameliorated PRRSV-induced inflammation. Pathway analysis results revealed that PRRSV-induced pathways including arachidonic acid metabolism, linoleic acid, glycerophospholipid and alanine, aspartate and glutamate metabolism were suppressed by quercetin. Moreover, we confirmed that quercetin inhibited the activation of NF-κB/p65 pathway, probably by attenuating PLA2, ALOX and COX mRNA expression. CONCLUSIONS: These results provide a crucial insight into the molecular mechanism of quercetin in alleviating PRRSV-induced inflammation.
Assuntos
Ácido Araquidônico , Glutamina , Inflamação , Vírus da Síndrome Respiratória e Reprodutiva Suína , Quercetina , Quercetina/farmacologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/efeitos dos fármacos , Animais , Linhagem Celular , Inflamação/virologia , Inflamação/tratamento farmacológico , Glutamina/metabolismo , Glutamina/farmacologia , Ácido Araquidônico/metabolismo , Suínos , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/tratamento farmacológico , Chlorocebus aethiopsRESUMO
The simultaneous or sequential application of pesticides such as triazophos (TRI) and fenvalerate (FEN) in agriculture results in their residues co-existing in the environments. However, the impact of co-exposure to TRI and FEN on the gut-liver axis, along with the underlying mechanisms, remains unclear. Our results showed that exposure to FEN (96 h-LC50 value of 0.096 mg a.i. L-1) was more toxic to adult zebrafish compared to TRI (96 h-LC50 value of 6.75 mg a.i. L-1). Furthermore, the study aimed to reveal the toxic potencies of individual and combined exposure to TRI and FEN on the liver-gut axis in zebrafish (Danio rerio). Our results also indicated that pesticide exposure decreased tight junction molecule expression and increased intestinal inflammatory molecule expression in D. rerio, with co-exposure demonstrating enhanced toxicity. Co-exposure altered gut flora structure and species abundance. RNA-Seq sequencing revealed changes in liver gene expressions, particularly enrichment of P53 signaling. Molecular docking demonstrated FEN's stronger binding to P53 and Caspase3, correlating with its higher toxicity. Liver pathology confirmed exacerbated liver damage by individual and co-exposures, with co-exposure inducing more severe liver injury. qPCR results showed increased pro-apoptotic gene expression and decreased anti-apoptotic gene expression, with co-exposure exhibiting an interactive effect. Overall, this study identifies specific targets and pathways influenced by these pesticides, revealing toxicity mechanisms involving the gut-liver axis, which is crucial for environmental risk assessment of pesticide mixtures.
Assuntos
Fígado , Nitrilas , Piretrinas , Triazóis , Poluentes Químicos da Água , Peixe-Zebra , Animais , Piretrinas/toxicidade , Nitrilas/toxicidade , Triazóis/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Poluentes Químicos da Água/toxicidade , Organotiofosfatos/toxicidade , Inseticidas/toxicidade , Simulação de Acoplamento MolecularRESUMO
Basalt fiber (BF) with modification of iron (Fe-MBF) and calcium (Ca-MBF) were filled into constructed wetland-microbial fuel cell (CW-MFC) for innovative comparison of improved performance under perfluorooctanoic acid (PFOA) exposure. More enhancement on nitrogen and phosphorus removal was observed by Fe-MBF than Ca-MBF, with significant increase of ammonium (NH4+-N) removal by 3.36-5.66 % (p < 0.05) compared to control, even under PFOA stress. Markedly higher removal efficiency of PFOA by 4.76-8.75 % (p < 0.05) resulted from Fe-MBF, compared to Ca-MBF and control BF groups. Besides, superior electrochemical performance was found in Fe-MBF group, with maximum power density 28.65 % higher than control. Fe-MBF caused higher abundance of dominant microbes on electrodes ranged from phylum to family. Meanwhile, ammonia oxidizing bacteria like Nitrosomonas was more abundant in Fe-MBF group, which was positively correlated to NH4+-N and total nitrogen removal. Some other functional genera involved in denitrification and phosphorus-accumulation were enriched by Fe-MBF on electrodes and MBF carrier, including Dechloromonas, Candidatus_Competibacter, and Pseudomonas. Additionally, there were more biomarkers in Fe-MBF group, like Pseudarcobacter and Acidovorax, conducive to nitrogen and iron cycling. Most functional genes of nitrogen, carbon, and sulfur metabolisms were up-regulated with Fe-MBF filling, causing improvement on nitrogen removal.
Assuntos
Bactérias , Fontes de Energia Bioelétrica , Fósforo , Áreas Alagadas , Bactérias/metabolismo , Bactérias/genética , Fósforo/química , Nitrogênio , Poluentes Químicos da Água/toxicidade , Ferro/química , Caprilatos , Cálcio/metabolismoRESUMO
Basalt fiber (BF) was filled in constructed wetland-microbial fuel cell (CW-MFC) as bio-carrier for enhancement of operation performance under perfluorooctanoic acid (PFOA) exposure. In this study, although PFOA caused significant decline of ammonium removal by 7.5-7.7 %, slight promotion on nitrogen and phosphorus removal was observed with BF filling, compared to control. PFOA removal also increased by 1.7-3.4 % in BF filling group. Besides, improved electrochemical performance was discovered with BF filling, in which the highest power density increased by 86.6 % than control, even under PFOA stress. Enhanced stability and performance of CW-MFC resulted from stimulation of functional bacteria on electrodes like Dechloromonas, Thauera, Zoogloea, Gemmobacter, and Pseudomonas, which were further enriched on BF carrier. Higher abundance of nitrogen metabolism and related genes on electrodes and BF carrier was also discovered with BF filling. This study offered new findings on application of BF in CW-MFC systems with PFOA exposure.
Assuntos
Fontes de Energia Bioelétrica , Caprilatos , Fluorocarbonos , Áreas Alagadas , Caprilatos/farmacologia , Fluorocarbonos/química , Nitrogênio , Bactérias/metabolismo , Eletrodos , Fósforo/farmacologia , Poluentes Químicos da ÁguaRESUMO
BACKGROUND: The presence of barnyardgrass poses a threat to global food security by reducing rice yields. Currently, herbicides are primarily applied for weed management. However, the effectiveness of herbicide deposition and uptake on barnyardgrass is limited as a consequence of the high wax content on leaves, low water solubility and extreme lipophilicity of herbicides. Therefore, it is imperative to develop novel formulations for efficient delivery of herbicides to improve herbicidal activity and reduce dosage. RESULTS: We successfully prepared nanosuspension(s) (NS) of quinclorac through the wet media milling technique. This NS demonstrates excellent physical stability and maintains nanoscale during dose transfer. The deposition concentration and uptake concentration of NS on barnyardgrass were 3.84-4.47- and 2.11-2.58-fold greater than those traditional formulations, respectively. Moreover, the NS exhibited enhanced herbicidal activity against barnyardgrass at half the dosage required by conventional formulations without compromising rice safety. CONCLUSIONS: These findings suggest that NS can effectively facilitate the delivery of hydrophobic and poorly water-soluble herbicide active ingredients, thereby enhancing their deposition, uptake and bioactivity. This study expands the potential application of NS in pesticide delivery, which can provide valuable support for optimizing pesticide utilization, improving economic efficiency and mitigating environmental risks. © 2024 Society of Chemical Industry.
Assuntos
Herbicidas , Quinolinas , Herbicidas/química , Herbicidas/farmacologia , Quinolinas/química , Quinolinas/farmacologia , Suspensões , Nanopartículas/química , Echinochloa/efeitos dos fármacos , Controle de Plantas Daninhas/métodosRESUMO
The flourishing progress in nanotechnology offers boundless opportunities for agriculture, particularly in the realm of nanopesticides research and development. However, concerns have been raised regarding the human and environmental safety issues stemming from the unrestrained use of non-therapeutic nanomaterials in nanopesticides. It is also important to consider whether the current development strategy of nanopesticides based on nanocarriers can strike a balance between investment and return, and if the complex material composition genuinely improves the efficiency, safety, and circularity of nanopesticides. Herein, we introduced the concept of nanopesticides with minimizing carriers (NMC) prepared through prodrug design and molecular self-assembly emerging as practical tools to address the current limitations, and compared it with nanopesticides employing non-therapeutic nanomaterials as carriers (NNC). We further summarized the current development strategy of NMC and examined potential challenges in its preparation, performance, and production. Overall, we asserted that the development of NMC systems can serve as the innovative driving force catalyzing a green and efficient revolution in nanopesticides, offering a way out of the current predicament.
RESUMO
Background: The immune microenvironment assumes a significant role in the pathogenesis of osteoarthritis (OA). However, the current biomarkers for the diagnosis and treatment of OA are not satisfactory. Our study aims to identify new OA immune-related biomarkers to direct the prevention and treatment of OA using multi-omics data. Methods: The discovery dataset integrated the GSE89408 and GSE143514 datasets to identify biomarkers that were significantly associated with the OA immune microenvironment through multiple machine learning methods and weighted gene co-expression network analysis (WGCNA). The identified signature genes were confirmed using two independent validation datasets. We also performed a two-sample mendelian randomization (MR) study to generate causal relationships between biomarkers and OA using OA genome-wide association study (GWAS) summary data (cases n = 24,955, controls n = 378,169). Inverse-variance weighting (IVW) method was used as the main method of causal estimates. Sensitivity analyses were performed to assess the robustness and reliability of the IVW results. Results: Three signature genes (FCER1G, HLA-DMB, and HHLA-DPA1) associated with the OA immune microenvironment were identified as having good diagnostic performances, which can be used as biomarkers. MR results showed increased levels of FCER1G (OR = 1.118, 95% CI 1.031-1.212, P = 0.041), HLA-DMB (OR = 1.057, 95% CI 1.045 -1.069, P = 1.11E-21) and HLA-DPA1 (OR = 1.030, 95% CI 1.005-1.056, P = 0.017) were causally and positively associated with the risk of developing OA. Conclusion: The present study identified the 3 potential immune-related biomarkers for OA, providing new perspectives for the prevention and treatment of OA. The MR study provides genetic support for the causal effects of the 3 biomarkers with OA and may provide new insights into the molecular mechanisms leading to the development of OA.
Assuntos
Biomarcadores , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Osteoartrite , Humanos , Osteoartrite/genética , Osteoartrite/imunologia , Osteoartrite/diagnóstico , Transcriptoma , Predisposição Genética para Doença , Aprendizado de Máquina , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Pesticide formulations are typically applied as mixtures, and their synergistic effects can increase toxicity to the organisms in the environment. Despite pesticide mixtures being the leading cause of pesticide exposure incidents, little attention has been given to assessing their combined toxicity and interactions. This survey purposed to reveal the cumulative toxic effects of deltamethrin (DEL) and cyazofamid (CYA) on earthworms (Eisenia fetida) by examining multiple endpoints. Our findings revealed that the LC50 values of DEL for E. fetida, following 7- and 14-day exposures, ranged from 887.7 (728-1095) to 1552 (1226-2298) mg kg-1, while those of CYA ranged from 316.8 (246.2-489.4) to 483.2 (326.1-1202) mg kg-1. The combinations of DEL and CYA induced synergistic influences on the organisms. The contents of Cu/Zn-SOD and CarE showed significant variations when exposed to DEL, CYA, and their combinations compared to the untreated group. Furthermore, the mixture administration resulted in more pronounced alterations in the expression of five genes (hsp70, tctp, gst, mt, and crt) associated with cellular stress, carcinogenesis, detoxification, and endoplasmic reticulum compared to single exposures. In conclusion, our comprehensive findings provided detailed insights into the cumulative toxic effects of chemical mixtures across miscellaneous endpoints and concentration ranges. These results underscored the importance of considering mixture administration during ecological risk evaluations of chemicals.
Assuntos
Nitrilas , Oligoquetos , Piretrinas , Animais , Oligoquetos/efeitos dos fármacos , Piretrinas/toxicidade , Nitrilas/toxicidadeRESUMO
In this study, ferrous ion (Fe(II)) had the potential to promote ecological functions in constructed wetlands (CWs) under perfluorooctanoic acid (PFOA) stress. Concretely, Fe(II) at 30 mg/L and 20-30 mg/L even led to 11.37% increase of urease and 93.15-243.61% increase of nitrite oxidoreductase respectively compared to the control. Fe(II) promotion was also observed on Nitrosomonas, Nitrospira, Azospira, and Zoogloea by 1.00-6.50 folds, which might result from higher expression of nitrogen fixation and nitrite redox genes. These findings could be explanation for increase of ammonium removal by 7.47-8.75% with Fe(II) addition, and reduction of nitrate accumulation with 30 mg/L Fe(II). Meanwhile, both Fe(II) stimulation on PAOs like Dechloromonas, Rhodococcus, Mesorhizobium, and Methylobacterium by 1.58-2.00 folds, and improvement on chemical phosphorus removal contributed to higher total phosphorus removal efficiency under high-level PFOA exposure. Moreover, Fe(II) raised chlorophyll content and reduced the oxidative damage brought by PFOA, especially at lower dosage. Nevertheless, combination of Fe(II) and high-level PFOA caused inhibition on microbial alpha diversity, which could result in decline of PFOA removal (by 4.29-12.83%). Besides, decrease of genes related to nitrate reduction demonstrated that enhancement on denitrification was due to nitrite reduction to N2 pathways rather than the first step of denitrifying process.
Assuntos
Caprilatos , Desnitrificação , Fluorocarbonos , Ferro , Ferro/metabolismo , Nitratos/metabolismo , Nitritos , Eliminação de Resíduos Líquidos , Áreas Alagadas , Fósforo , Compostos Ferrosos , NitrogênioRESUMO
Modified basalt fiber (MBF) is a potential material that has been applied in wastewater treatment fields. In this study, superior performances of MBFs by calcium (Ca-MBF) and polyethyleneimine modification (PEI-MBF) were compared in constructed wetlands (CWs). Via chemical grafting, higher biofilm contents were observed on the surface of PEI-MBF, compared to Ca-MBF. Moreover, MBF increased key enzyme activities particularly in lower substrate layer, contributing to positive responses of microbial community in CWs. For instance, PEI-MBF boosted microbial richness and diversity and improved the abundances of denitrifying functional bacteria and biomarkers like Thauera, Vulcanibacillus, and Maritimimonas, probably promoting nitrate removal compared with Ca-MBF group. By contrast, Ca-MBF enriched more functional genera involved in nutrients removal, with the highest removal of ammonium (43.9 %), total nitrogen (66.2 %), and total phosphorus (37.1 %). Overall, this work provided new findings on improved performance of CWs with MBF.
Assuntos
Silicatos , Eliminação de Resíduos Líquidos , Águas Residuárias , Áreas Alagadas , Nitrogênio/análise , DesnitrificaçãoRESUMO
Mycotoxins and pesticides are pervasive elements within the natural ecosystem. Furthermore, many environmental samples frequently exhibit simultaneous contamination by multiple mycotoxins and pesticides. Nevertheless, a significant portion of previous investigations has solely reported the occurrence and toxicological effects of individual chemicals. Global regulations have yet to consider the collective impacts of mycotoxins and pesticides. In our present study, we undertook a comprehensive analysis of multi-level endpoints to elucidate the combined toxicity of aflatoxin B1 (AFB1) and tebuconazole (TCZ) on zebrafish (Danio rerio). Our findings indicated that AFB1 (with a 10-day LC50 value of 0.018 mg L-1) exhibits higher toxicity compared to TCZ (with a 10-day LC50 value of 2.1 mg L-1) toward D. rerio. The co-exposure of AFB1 and TCZ elicited synergistic acute responses in zebrafish. The levels of GST, CYP450, SOD, and Casp-9 exhibited significant variations upon exposure to AFB1, TCZ, and their combined mixture, in contrast to the control group. Additionally, eight genes, namely cat, cxcl-cic, il-1ß, bax, apaf-1, trß, ugtlab, and vtg1, displayed marked alterations when exposed to the chemical mixture as opposed to individual substances. Therefore, further exploration of the underlying mechanisms governing joint toxicity is imperative to establish a scientific basis for evaluating the risk associated with the combined effects of AFB1 and TCZ. Moreover, it is essential to thoroughly elucidate the organ system toxicity triggered by the co-occurrence of mycotoxins and pesticides.
Assuntos
Micotoxinas , Praguicidas , Animais , Peixe-Zebra , Aflatoxina B1/toxicidade , Ecossistema , Praguicidas/toxicidade , Desenvolvimento EmbrionárioRESUMO
Insect sex pheromones as an alternative to chemical pesticides hold promising prospects in pest control. However, their burst release and duration need to be optimized. Herein, pheromone-loaded core-shell fibers composed of degradable polycaprolactone and polyhydroxybutyrate were prepared by coaxial electrospinning. The results showed that this core-shell fiber had good hydrophobic performance and thermal stability, and the light transmittance in the ultraviolet band was only below 40%, which provided protection to pheromones. The core-shell structure alleviated the burst release of pheromone in the fiber and extended the release time to about 133 days. In the field, the pheromone-loaded core-shell fibers showed the same continuous and efficient trapping of Spodoptera litura as the commercial carriers. More importantly, the electrospun fibers combined with biomaterials had a degradability unmatched by commercial carriers. The structure design strategy provides ideas for the innovative design of pheromone carriers and is a potential tool for the management of agricultural pests.
Assuntos
Materiais Biocompatíveis , FeromôniosRESUMO
Hydrogels with porous networks have received considerable attention in smart pesticide delivery due to their inherent versatility. In this study, acaricide cyetpyrafen (CPF)-loaded borax (BO) cross-linked hydroxypropyl guar gum (HPG) (CPF@BO-co-HPG, CBG) hydrogels were prepared by cross-linking and pesticide loading simultaneously. The flowable CBG hydrogels with 3D porous network structures had better wetting and spreading ability on Citrus reticulata Blanco leaves and a hydrophobic interface. The nonflowable CBG hydrogels had pH- and temperature-responsive release properties. Meanwhile, the acaricidal efficacy of CBG against Panonychus citri (McGregor) at both 24 and 48 h was significantly higher than those of CPF-loaded BO-free HPG hydrogels. Furthermore, CBG had a nutritional function for cotton growth and environmental safety for zebrafish. This research developed a BO cross-linked HPG hydrogel as a smart pesticide delivery vehicle and crop nutrient replenishment, which can be widely applied in sustainable agriculture.
Assuntos
Acaricidas , Hidrogéis , Animais , Hidrogéis/química , Peixe-Zebra , Concentração de Íons de HidrogênioRESUMO
Accurate delineation of glioma infiltrative margins remains a challenge due to the low density of cancer cells in these regions. Here, a hierarchical imaging strategy to define glioma margins by locating the immunosuppressive tumor-associated macrophages (TAMs) is proposed. A pH ratiometric fluorescent probe CP2-M that targets immunosuppressive TAMs by binding to mannose receptor (CD206) is developed, and it subsequently senses the acidic phagosomal lumen, resulting in a remarkable fluorescence enhancement. With assistance of CP2-M, glioma xenografts in mouse models with a tumor-to-background ratio exceeding 3.0 for up to 6 h are successfully visualized. Furthermore, by intra-operatively mapping the pH distribution of exposed tissue after craniotomy, the glioma allograft in rat models is precisely excised. The overall survival of rat models significantly surpasses that achieved using clinically employed fluorescent probes. This work presents a novel strategy for locating glioma margins, thereby improving surgical outcomes for tumors with infiltrative characteristics.
Assuntos
Glioma , Macrófagos Associados a Tumor , Camundongos , Humanos , Ratos , Animais , Glioma/metabolismo , Corantes Fluorescentes , Receptor de ManoseRESUMO
The polylactic acid-glycolic acid copolymer (PLGA) has been proven to be applicable in medicine, but there is limited research on its application and safety in the agricultural field. In this paper, thifluzamide PLGA microspheres were prepared via phacoemulsification and solvent volatilization, using the PLGA copolymer as the carrier and thifluzamide as the active component. It was found that the microspheres had good slow-release performance and fungicidal activity against Rhizoctonia solani. A comparative study was conducted to show the effect of thifluzamide PLGA microspheres on cucumber seedlings. Physiological and biochemical indexes of cucumber seedlings, including dry weight, root length, chlorophyll, protein, flavonoids, and total phenol content, indicated that the negative effect of thifluzamide on plant growth could be mitigated when it was wrapped in PLGA microspheres. This work explores the feasibility of PLGA as carriers in fungicide applications.