Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Ind Health ; 37(5): 270-279, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33856234

RESUMO

The organochlorine insecticide dichlorodiphenyltrichloroethane (DDT) and heavy metal cadmium (Cd) are widespread environmental pollutants. They are persistent in the environment and can accumulate in organisms. Although the individual toxicity of DDT and Cd has been well documented, their combined toxicity is still not clear. Since liver is their common target, in this study, the individual and combined toxicity of DDT and Cd in human liver carcinoma HepG2 and human normal liver THLE-3 cell lines were investigated. The results showed that DDT and Cd inhibited the viability of HepG2 and THLE-3 cells dose-dependently and altered lysosomal morphology and function. Intracellular reactive oxygen species and lipid peroxidation levels were induced by DDT and Cd treatment. The combined cytotoxicity of DDT and Cd was greater than their individual cytotoxicity, and the interaction between Cd and DDT was additive on the inhibition of cell viability and lysosomal function of HepG2 cells. The interaction was antagonistic on the inhibition of cell viability of THLE-3 cells. These results may facilitate the evaluation of the cumulative risk of pesticides and heavy metal residues in the environment.


Assuntos
Cádmio/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/efeitos adversos , DDT/toxicidade , Poluentes Ambientais/toxicidade , Células Hep G2/efeitos dos fármacos , Inseticidas/toxicidade , Metais Pesados/toxicidade , Células Cultivadas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estresse Oxidativo/efeitos dos fármacos
2.
J Biol Chem ; 294(29): 11333-11341, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31175157

RESUMO

Vertebrate myosin-5a is an ATP-utilizing processive motor associated with the actin network and responsible for the transport and localization of several vesicle cargoes. To transport cargo efficiently and prevent futile ATP hydrolysis, myosin-5a motor function must be tightly regulated. The globular tail domain (GTD) of myosin-5a not only functions as the inhibitory domain but also serves as the binding site for a number of cargo adaptor proteins, including melanophilin (Mlph) and Rab-interacting lysosomal protein-like 2 (RILPL2). In this study, using various biochemical approaches, including ATPase, single-molecule motility, GST pulldown assays, and analytical ultracentrifugation, we demonstrate that the binding of both Mlph and RILPL2 to the GTD of myosin-5a is required for the activation of myosin-5a motor function under physiological ionic conditions. We also found that this activation is regulated by the small GTPase Rab36, a binding partner of RILPL2. In summary, our results indicate that RILPL2 is required for Mlph-mediated activation of Myo5a motor activity under physiological conditions and that Rab36 promotes this activation. We propose that Rab36 stimulates RILPL2 to interact with the myosin-5a GTD; this interaction then induces exposure of the Mlph-binding site in the GTD, enabling Mlph to interact with the GTD and activate myosin-5a motor activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas Motores Moleculares/fisiologia , Miosina Tipo V/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Camundongos , Proteínas Motores Moleculares/metabolismo , Miosina Tipo V/metabolismo , Concentração Osmolar , Ligação Proteica
3.
Sci Rep ; 5: 10874, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26039755

RESUMO

The tail-inhibition model is generally accepted for the regulation of myosin-5a motor function. Inhibited myosin-5a is in a folded conformation in which its globular tail domain (GTD) interacts with its head and inhibits its motor function, and high Ca(2+) or cargo binding may reduce the interaction between the GTD and the head of myosin-5a, thus activating motor activity. Although it is well established that myosin-5a motor function is regulated by Ca(2+), little is known about the effects of cargo binding. We previously reported that melanophilin (Mlph), a myosin-5a cargo-binding protein, is capable of activating myosin-5a motor function. Here, we report that Mlph-GTBDP, a 26 amino-acid-long peptide of Mlph, is sufficient for activating myosin-5a motor function. We demonstrate that Mlph-GTBDP abolishes the interaction between the head and GTD of myosin-5a, thereby inducing a folded-to-extended conformation transition for myosin-5a and activating its motor function. Mutagenesis of the GTD shows that the GTD uses two distinct, non-overlapping regions to interact with Mlph-GTBDP and the head of myosin-5a. We propose that the GTD is an allosteric protein and that Mlph allosterically inhibits the interaction between the GTD and head of myosin-5a, thereby activating myosin-5a motor function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Miosina Tipo V/química , Miosina Tipo V/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Adenosina Trifosfatases/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Sítios de Ligação , Proteínas de Transporte , Linhagem Celular , Camundongos , Modelos Moleculares , Miosina Tipo V/antagonistas & inibidores , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA