Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e29722, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38681628

RESUMO

The objective of this study was to explore the pharmacological mechanism of transdermal administration of eugenol (EUG) for pain treatment. Firstly, network pharmacology techniques were employed to identify the potential targets responsible for the analgesic effect of EUG. Subsequently, molecular docking technology was used to validate interactions between EUG and the crystal structure of the core target protein. Finally, the impact of EUG on the expression and activation of TRPV1 receptors in HaCaT cells was evaluated through in vitro experiments, thus confirming the analysis of network pharmacology. The study suggested that the transdermal administration of EUG for pain treatment might target the TRPV1 receptor. Molecular docking revealed that EUG could spontaneously bind to the TRPV1 receptor with a high binding ability. The analysis of Western blot (WB) and intracellular Ca2+ levels demonstrated that EUG could increase the expression of TRPV1 in HaCaT cells, activating TRPV1 to induce intracellular Ca2+ influx (P < 0.05). These findings suggested that the initial application of EUG would cause a brief stimulation of TRPV1 receptors and upregulation of TRPV1 expression. Upon continued exposure, EUG would act as a TRPV1 agonist, increasing intracellular Ca2+ levels that might be associated with desensitization of pain sensations.

2.
Adv Mater ; 36(16): e2312590, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38227454

RESUMO

Fiber solar cells as promising wearable power supplies have attracted increasing attentions recently, while further breakthrough on their power conversion efficiency (PCE) and realization of multicolored appearances remain urgent needs particularly in real-world applications. Here, a fiber-dye-sensitized solar cell (FDSSC) integrated with a light diffusion layer composed of alumina/polyurethane film on the outmost encapsulating tube and a light conversion layer made from phosphors/TiO2/poly(vinylidene fluoride-co-hexafluoropropylene) film on the inner counter electrode is designed. The incident light is diffused to more surfaces of fiber electrodes, then converted on counter electrode and reflected to neighboring photoanode, so the FDSSC efficiently takes advantage of the fiber shape for remarkably enhanced light harvesting, producing a record PCE of 13.11%. These efficient FDSSCs also realize color-tunable appearances, improving their designability and compatibility with textiles. They are further integrated with fiber batteries as power systems, providing a power solution for wearables and emerging smart textiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA