RESUMO
Mycotoxins have strong immunotoxicity and can induce oxidative stress and mitochondrial dynamics imbalance. Mitochondrial antiviral signaling protein (MAVS) in the RIG-I like receptor (RLR) pathway of innate immunity is located on mitochondria, and whether it is affected by mycotoxins has not been reported yet. This experiment used porcine alveolar macrophages (PAM) to evaluate the antagonism of three isomers of chlorogenic acid (chlorogenic acid, isochlorogenic acid A, and neochlorogenic acid) against combined mycotoxins (Aflatoxin B1, Deoxynivalenol, and Ochratoxin A) induced mitochondrial damage and their effects on the RLR pathway, providing assistance for further elucidating the mechanism of mycotoxin immunotoxicity. Western blotting, enzyme linked immunosorbent assay (ELISA), and flow cytometry were used to detect relevant indicators. All three types of chlorogenic acid treatment can antagonize the cytotoxicity induced by combined mycotoxins, especially isochlorogenic acid A, which can protect cells from mycotoxins damage by maintaining mitochondrial dynamic homeostasis and improving innate immune function related to the RLR pathway.
Assuntos
Ácido Clorogênico , Imunidade Inata , Macrófagos Alveolares , Dinâmica Mitocondrial , Micotoxinas , Tricotecenos , Animais , Ácido Clorogênico/farmacologia , Ácido Clorogênico/análogos & derivados , Micotoxinas/toxicidade , Suínos , Dinâmica Mitocondrial/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Tricotecenos/toxicidade , Imunidade Inata/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ocratoxinas/toxicidade , Aflatoxina B1/toxicidade , Células Cultivadas , Transdução de Sinais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacosRESUMO
Retained placenta (RP) affects lactation and fertility in dairy cows and causes economic losses to the dairy industry. Therefore, screening for early warning of this disease is important. This study used multi omics techniques to reveal the metabolic differences of dairy cows before RP onset and to find potential warning markers. Fecal samples and serum samples of 90 healthy Holstein cows were collected 7 days pre-calving; 10 healthy and 10 RP cows were enrolled according to normal expulsion of fetal membranes after calving. Fecal samples were subjected to 16S rRNA sequencing and untargeted metabolomics analysis, while plasma was analyzed using targeted metabolomics. Pathogenic bacteria levels increased in the intestines of cows with RP compared to those in healthy cows. Lipid metabolites constituted the largest proportion of differential metabolites between feces and plasma. Six potential warning markers for RP in cows were identified, including two fecal microbiomics markers (Oscillospiraceae UCG-005 and Escherichia-Shigella), one fecal untargeted metabolomics marker (N-acetylmuramic acid), and three plasma targeted metabolomics markers (glycylcholic acid-3 sulfate, 7-ketolithocholic acid, and 12-ketolithocholic acid). These biomarkers can predict RP occurrence in the early perinatal period. These results lay a theoretical foundation for early nutritional intervention and pathogenesis research in dairy cows.
RESUMO
Plant Extracts (PE) are natural substances extracted from plants, rich in various bioactive components. Exploring the molecular mechanisms and interactions involved in the vascular protective effects of PE is beneficial for the development of further strategies to protect aging blood vessels. For this review, the content was obtained from scientific databases such as PubMed, China National Knowledge Infrastructure (CNKI), and Google Scholar up to July 2024, using the search terms "Plant extracts", "oxidative stress", "vascular aging", "endothelial dysfunction", "ROS", and "inflammation". This review highlighted the effects of PE in protecting aging blood vessels. Through pathways such as scavenging reactive oxygen species, activating antioxidant signaling pathways, enhancing respiratory chain complex activity, inhibiting mitochondrial-reactive oxygen species generation, improving nitric oxide bioavailability, downregulating the secretion of inflammatory factors, and activating sirtuins 1 and Nrf2 signaling pathways, it can improve vascular structural and functional changes caused by age-related oxidative stress, mitochondrial dysfunction, and inflammation due to aging, thereby reducing the incidence of age-related cardiovascular diseases.
Assuntos
Envelhecimento , Antioxidantes , Vasos Sanguíneos , Estresse Oxidativo , Extratos Vegetais , Transdução de Sinais , Humanos , Extratos Vegetais/farmacologia , Envelhecimento/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Antioxidantes/farmacologia , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Inflamação/prevenção & controle , Doenças Cardiovasculares/prevenção & controle , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico/metabolismoRESUMO
Introduction: The risk of ketosis is assessed by monitoring changes in plasma metabolites and cow behavior during the peripartum period. However, little is known about changes in the fecal bile acid and microbiota of cows before parturition. Therefore, this study clarified the bile acid profile and screened potential warning biomarkers in heifers 7 days before calving. Methods: Ninety healthy cows were tracked in the transition period, and plasma and feces were collected 7 days before calving, on calving day, and 7 days after calving. The cows were divided into ketosis and healthy groups based on the blood ß-hydroxybutyric acid levels from day 7 after calving. The levels of serum biochemical indices were measured at three time points using commercial kits. Ten cows in the ketosis group (KET-7) and 10 healthy cows (HEA-7) were randomly selected 7 days before calving for metabolome and 16S rRNA amplicon sequencing. Results: No significant differences in serum energy-related indices were observed 7 days before calving. The major bile acids in the feces of the KET-7 group were non-conjugated secondary bile acids (UnconSBA). Differential bile acids were primarily derived from UnconSBA. The potential ketosis warning metabolite in feces for 7 days before delivery was isodeoxycholic acid. The abundance of Rikenellaaceae-RC9-gut-group in the KET-7 group increased, whereas the abundance of Oscillospiraceae UCG-010 bacteria significantly decreased. Lactobacillus and Prevotella-9 in feces were potential warning biomarkers for ketosis in dairy cows 7 days before calving. The variation in differential bile acids in the plasma, consistent with the feces, was mainly derived from UnconSBA. Lithocholic acid in the plasma was a potential ketosis warning metabolite 7 days before delivery. Conclusion: Ketotic cows experienced bile acid metabolism disorders 7 days before calving, and the gut microbiota was closely related to bile acid metabolism disorders. Future studies should investigate the relationship between secondary bile acids and the development of ketosis.
RESUMO
Metabolic maladaptation in dairy cows after calving can lead to long-term elevation of ketones, such as ß-hydroxybutyrate (BHB), representing the condition known as hyperketonemia, which greatly influences the health and production performance of cows during the lactation period. Although the gut microbiota is known to alter in dairy cows with hyperketonemia, the association of microbial metabolites with development of hyperketonemia remains unknown. In this study, we performed a multi-omics analysis to investigate the associations between fecal microbial community, fecal/plasma metabolites, and serum markers in hyperketonemic dairy cows during the transition period. Dynamic changes in the abundance of the phyla Verrucomicrobiota and Proteobacteria were detected in the gut microbiota of dairy cows, representing an adaptation to enhanced lipolysis and abnormal glucose metabolism after calving. Random forest and univariate analyses indicated that Frisingicoccus is a key bacterial genus in the gut of cows during the development of hyperketonemia, and its abundance was positively correlated with circulating branched-chain amino acid levels and the ketogenesis pathway. Taurodeoxycholic acid, belonging to the microbial metabolite, was strongly correlated with an increase in blood BHB level, and the levels of other secondary bile acid in the feces and plasma were altered in dairy cows prior to the diagnosis of hyperketonemia, which link the gut microbiota and hyperketonemia. Our results suggest that alterations in the gut microbiota and its metabolites contribute to excessive lipolysis and insulin insensitivity during the development of hyperketonemia, providing fundamental knowledge about manipulation of gut microbiome to improve metabolic adaptability in transition dairy cows.IMPORTANCEAccumulating evidence is pointing to an important association between gut microbiota-derived metabolites and metabolic disorders in humans and animals; however, this association in dairy cows from late gestation to early lactation is poorly understood. To address this gap, we integrated longitudinal gut microbial (feces) and metabolic (feces and plasma) profiles to characterize the phenotypic differences between healthy and hyperketonemic dairy cows from late gestation to early lactation. Our results demonstrate that cows underwent excessive lipid mobilization and insulin insensitivity before hyperketonemia was evident. The bile acids are functional readouts that link gut microbiota and host phenotypes in the development of hyperketonemia. Thus, this work provides new insight into the mechanisms involved in metabolic adaptation during the transition period to adjust to the high energy and metabolic demands after calving and during lactation, which can offer new strategies for livestock management involving intervention of the gut microbiome to facilitate metabolic adaptation.
Assuntos
Microbioma Gastrointestinal , Insulinas , Feminino , Humanos , Gravidez , Bovinos , Animais , Lactação/metabolismo , Glucose/metabolismo , Lipólise , Insulinas/metabolismoRESUMO
Cellulolytic bacteria with probiotic functions play a crucial role in promoting the intestinal health in herbivores. In this study, we aimed to correlate the 16S rRNA gene amplicon sequencing and fiber-degrading enzyme activity data from six different herbivore feces samples. By utilizing the separation and screening steps of probiotics, we targeted and screened high-efficiency fiber-degrading bacteria with probiotic functions. The animals included Maiwa Yak (MY), Holstein cow (CC), Tibetan sheep (TS), Southern Sichuan black goat (SG), Sichuan white rex rabbit (CR), and New Zealand white rabbit (ZR). The results showed that the enzymes associated with fiber degradation were higher in goat and sheep feces compared to cattle and rabbit's feces. Correlation analysis revealed that Bacillus and Fibrobacter were positively correlated with five types of fiber-degrading related enzymes. Notably, the relative abundance of Bacillus in the feces of Tibetan sheep was significantly higher than that of other five herbivores. A strain TS5 with good cellulose decomposition ability from the feces of Tibetan sheep by Congored staining, filter paper decomposition test, and enzyme activity determination was isolated. The strain was identified as Bacillus velezensis by biological characteristics, biochemical analysis, and 16S rRNA gene sequencing. To test the probiotic properties of Bacillus velezensis TS5, we evaluated its tolerance to acid and bile salt, production of digestive enzymes, antioxidants, antibacterial activity, and adhesion ability. The results showed that the strain had good tolerance to pH 2.0 and 0.3% bile salts, as well as good potential to produce cellulase, protease, amylase, and lipase. This strain also had good antioxidant capacity and the ability to antagonistic Staphylococcus aureus BJ216, Salmonella SC06, Enterotoxigenic Escherichia coli CVCC196, and Escherichia coli ATCC25922. More importantly, the strain had good self-aggregation and Caco-2 cell adhesion rate. In addition, we tested the safety of Bacillus velezensis TS5 by hemolysis test, antimicrobial susceptibility test, and acute toxicity test in mice. The results showed that the strain had no hemolytic phenotype, did not develop resistance to 19 commonly used antibiotics, had no cytotoxicity to Caco-2, and did not have acute toxic harm to mice. In summary, this study targeted isolated and screened a strain of Bacillus velezensis TS5 with high fiber-degrading ability and probiotic potency. This strain can be used as a potential probiotic for feeding microbial preparations for ruminants.
RESUMO
As a global toxin invasive species, the whole herb of Ageratina adenophora (A. adenophora) contains various sesquiterpenes, which can cause various degrees of toxic reactions characterized by inflammatory damage when ingested by animals. Current studies on the toxicity of A. adenophora have focused on parenchymatous organs such as the liver and spleen, but few studies have been conducted on the intestine as the organ that is first exposed to A. adenophora and digests and absorbs its toxic components. In this study, after feeding goats with 40 % A. adenophora herb powder for 90 d, we found that the intestinal structure of goats showed pathological changes characterized, and the damage to the small intestinal segments was more severe than that of the large intestine. The MLCK/ROCK signaling pathway was activated, the cytoskeleton underwent centripetal contraction, the composition of tight junctions between intestinal epithelial cells was altered table, Occludin, Claudin-1 and Zonula occluden (ZO-1) amount was decreased, and the intestinal mechanical barrier was disrupted. The intestinal damage markers diamine oxidase (DAO) and D-lactate (D-LA) levels were elevated. In addition, we also found that intestinal bacteria translocate and enter the portal vein to colonize the liver and mesenteric lymph nodes. The expression of intestinal pro-inflammatory factors and anti-inflammatory factors was changed, the intestinal immune function was disrupted. The present study is the first to analyze the mechanism of poisoning of A. adenophora from the intestinal tract in compound-gastric animals.
Assuntos
Ageratina , Animais , Ageratina/metabolismo , Cabras , Intestinos , Ocludina/metabolismo , Transdução de Sinais , Mucosa Intestinal/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Placenta is a kind of traditional Chinese medicine, known as "Ziheche", which has the function of tonifying qi and blood, nourishing liver and kidney. Placenta extract (PE) has been used for delaying organismal aging and treating various liver diseases. Cow placenta is a rich natural resource with large mass. Its composition is similar to that of human placenta, but it has not been effectively utilized. However, little is known about the effect of CPE on the liver of aging mice. AIM OF THE STUDY: The aim of this study is to explore the protective effect and mechanism of CPE on the liver of d-galactose (D-gal) induced aging mice. MATERIALS AND METHODS: Statistical methods were used to calculate mouse body weight and liver index. Hematoxylin-eosin (H&E) and transmission electron microscopy (TEM) were used to detect the morphological structure of the liver. Automatic biochemical analyzer was used to measure serum biochemical indicators. Three special staining methods were used to observe hepatocytes apoptosis, senescence and proliferation respectively. Relative kits were used to detect oxidative, inflammatory, and aging markers in the liver. Finally, real-time quantitative polymerase chain reaction and western-blot were used to detect aging related signaling pathways. RESULTS: CPE significantly improved the morphological damage and dysfunction of liver, restored the activities of liver enzymes in serum, and alleviated liver oxidative stress and inflammatory response in D-gal induced aging mice. Furthermore, CPE inhibited hepatocyte apoptosis and senescence, and promoted hepatocyte proliferation by regulating BAX/CASP3 and p53/p21/p16 signaling pathways, ultimately reduced the effects of aging on the liver. CONCLUSION: CPE effectively ameliorated the impact of aging on the liver by inhibiting free radical production or scavenging excessive free radicals, and its mechanism is associated to the regulation of apoptosis and proliferation-related factors.
Assuntos
Antioxidantes , Hepatopatias , Feminino , Humanos , Camundongos , Bovinos , Animais , Antioxidantes/farmacologia , Proteína X Associada a bcl-2/metabolismo , Galactose , Proteína Supressora de Tumor p53/metabolismo , Caspase 3/metabolismo , Estresse Oxidativo , EnvelhecimentoRESUMO
BACKGROUND: Extensive investigation has been undertaken about the utilization of saponin adjuvants in vaccines intended for veterinary and human applications. AB4 is the main constituent of the traditional Chinese medicine, Pulsatilla chinensis (Bunge) Regel, and has immunomodulatory activity. However, there is a paucity of reports on AB4 as a potential adjuvant. PURPOSE: The objective of this work was to clarify the adjuvant role of AB4 and the molecular mechanisms that underlie its immunomodulatory actions. STUDY DESIGN AND METHODS: The immunomodulatory effects of AB4 were investigated using network pharmacological analyses. These effects were validated by evaluating the developmental status of the immune organs and by using the following techniques: ELISA for the quantification of serum-specific antibodies to determine immune-related cytokine levels; the MTS method for the assessment of proliferative activity of splenic lymphocytes; flow cytometry to analyze lymphocyte and dendritic cell activation status; and western blotting for mechanistic analysis at the protein level. RESULTS: The network pharmacological analysis predicted a total of 52 targets and 12 pathways for AB4 to exert immunomodulatory effects. In a mouse model with immunity to OVA, the introduction of AB4 resulted in the enhancement of immunological organ growth and maturation, elevation of blood antibodies targeting OVA, and amplification of the production of cytokines associated with Th1 and Th2 immune responses. Additionally, the administration of AB4 resulted in a notable augmentation of lymphocyte proliferation and an elevation in the CD4+/CD8+ T lymphocyte ratios. Furthermore, the administration of AB4 enhanced the maturation process of DCs in the draining LNs and increased the production of co-stimulatory factors and MHC II molecules. AB4 induces the upregulation of TLR4 and IKK proteins, as well as the phosphorylation of NF-κB p65 protein within the TLR4/NF-κB signaling cascade, while concurrently suppressing the expression of IκBα protein. CONCLUSION: The specific immunoadjuvant effects of AB4 have been demonstrated to modulate the growth and maturation of immune organs and enhance the secretion and cellular activity of pertinent immune molecules. The utilization of network pharmacology, combined within and in vivo vitro assays, clarified the adjuvant function of AB4, which potentially involves the regulation of the TLR4/NF-κB signaling pathway.
Assuntos
NF-kappa B , Saponinas , Animais , Camundongos , Humanos , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Farmacologia em Rede , Adjuvantes Imunológicos/farmacologia , Citocinas/metabolismo , Saponinas/farmacologia , Saponinas/metabolismo , Adjuvantes Farmacêuticos , Células DendríticasRESUMO
Liver fibrosis (LF) is a late-stage process observed in various chronic liver diseases with bile and retinol metabolism closely associated with it. Adipose-derived mesenchymal stem cells (ADMSCs) have shown significant therapeutic potential in treating LF. In this study, the transplantation of ADMSCs was applied to a CCl4-induced LF model to investigate its molecular mechanism through a multi-omics joint analysis. The findings reveal that ADMSCs effectively reduced levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), gamma-glutamyltransferase (GGT), Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and α-Smooth muscle actin (α-SMA), thereby mitigating liver lesions, preventing liver parenchymal necrosis, and improving liver collagen deposition. Furthermore, 4751 differentially expressed genes (DEGs) and 270 differentially expressed metabolites (DMs) were detected via transcriptome and metabolomics analysis. Conjoint analysis showed that ADMSCs up-regulated the expression of Cyp7a1, Baat, Cyp27a1, Adh7, Slco1a4, Aldh1a1, and Adh7 genes to promote primary bile acids (TCDCA: Taurochenodeoxycholic acid; GCDCA: Glycochenodeoxycholic acid; GCA: glycocholic acid, TCA: Taurocholic acid) synthesis, secretion and retinol metabolism. This suggests that ADMSCs play a therapeutic role in maintaining bile acid (BA) homeostasis and correcting disturbances in retinol metabolism.
Assuntos
Hepatopatias , Células-Tronco Mesenquimais , Humanos , Vitamina A/metabolismo , Transcriptoma , Cirrose Hepática/genética , Cirrose Hepática/terapia , Cirrose Hepática/induzido quimicamente , Fígado/metabolismo , Hepatopatias/metabolismo , Obesidade/metabolismo , Ácidos e Sais Biliares/metabolismo , Células-Tronco Mesenquimais/patologiaRESUMO
Newly found biochemical characteristics of the placenta can provide new insights for further studies on the possible markers of physiological/pathological pregnancy or the function of the placenta. We compared the proteome of the dairy cow placenta after enzymatic hydrolysis by three different proteases using a label-free mass spectrometry approach. In total, 541, 136, and 86 proteins were identified in the trypsin group (TRY), pepsin group (PEP), and papain group (PAP). By comparing the proteome of the PAP and TRY, PEP and TRY, and PEP and PAP groups, 432, 421, and 136 differentially expressed proteins were identified, respectively. We compared the up-regulated DEPs and down-regulated DEPs of each comparison group. The results show that the proteins identified by papain were mostly derived from the extracellular matrix and collagen, and were enriched in the relaxin signaling pathway and AGE-RAGE signaling pathway in diabetic complications; pepsin digestion was able to identify more muscle-related proteins, which were enriched in the lysosome, platelet activation, cardiac muscle contraction, the bacterial invasion of epithelial cells, and small cell lung cancer; trypsin mainly enzymatically degraded the extracellular matrix, blood particles, and cell-surface proteins that were enriched in arginine and proline metabolism, olfactory transduction proteasome, protein processing in the endoplasmic reticulum, pyruvate metabolism, and arrhythmogenic right ventricular cardiomyopathy (ARVC). In summary, these results provide insights into the discovery of the physiological functions of dairy cow placenta and the selection of proteases in dairy cow placenta proteomics.
RESUMO
This study aimed to investigate the antimicrobial resistance (AMR), antibiotic resistance genes (ARGs) and integrons in 157 Escherichia coli (E. coli) strains isolated from feces of captive musk deer from 2 farms (Dujiang Yan and Barkam) in Sichuan province. Result showed that 91.72% (144/157) strains were resistant to at least one antimicrobial and 24.20% (38/157) strains were multi-drug resistant (MDR). The antibiotics that most E. coli strains were resistant to was sulfamethoxazole (85.99%), followed by ampicillin (26.11%) and tetracycline (24.84%). We further detected 13 ARGs in the 157 E. coli strains, of which blaTEM had the highest occurrence (91.72%), followed by aac(3')-Iid (60.51%) and blaCTX-M (16.56%). Doxycycline, chloramphenicol, and ceftriaxone resistance were strongly correlated with the presence of tetB, floR and blaCTX-M, respectively. The strongest positive association among AMR phenotypes was ampicillin/cefuroxime sodium (OR, 828.000). The strongest positive association among 16 pairs of ARGs was sul1/floR (OR, 21.667). Nine pairs positive associations were observed between AMR phenotypes and corresponding resistance genes and the strongest association was observed for CHL/floR (OR, 301.167). Investigation of integrons revealed intl1 and intl2 genes were detected in 10.19% (16/157) and 1.27% (2/157) E. coli strains, respectively. Only one type of gene cassettes (drA17-aadA5) was detected in class 1 integron positive strains. Our data implied musk deer is a reservoir of ARGs and positive associations were common observed among E. coli strains carrying AMRs and ARGs.
Assuntos
Anti-Infecciosos , Cervos , Infecções por Escherichia coli , Animais , Antibacterianos/farmacologia , Escherichia coli , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Farmacorresistência Bacteriana/genética , Ampicilina , China , Ruminantes , Integrons/genética , Testes de Sensibilidade MicrobianaRESUMO
BACKGROUND: Neonatal calf diarrhea (NCD) is typically treated with antibiotics, while long-term application of antibiotics induces drug resistance and antibiotic residues, ultimately decreasing feed efficiency. Pueraria polysaccharide (PPL) is a versatile antimicrobial, immunomodulatory, and antioxidative compound. This study aimed to compare the therapeutic efficacy of different doses of PPL (0.2, 0.4, 0.8 g/kg body weight (BW)) and explore the effect of plasma metabolites in diarrheal calves by the best dose of PPL. RESULTS: PPL could effectively improve the daily weight gain, fecal score, and dehydration score, and the dosage of 0.4 g/kg BW could reach curative efficacy against calf diarrhea (with effective rates 100.00%). Metabolomic analysis suggested that diarrhea mainly affect the levels of taurocholate, DL-lactate, LysoPCs, and intestinal flora-related metabolites, trimethylamine N-oxide; however, PPL improved liver function and intestinal barrier integrity by modulating the levels of DL-lactate, LysoPC (18:0/0:0) and bilirubin, which eventually attenuated neonatal calf diarrhea. It also suggested that the therapeutic effect of PPL is related to those differential metabolites in diarrheal calves. CONCLUSIONS: The results showed that 0.4 g/kg BW PPL could restore the clinical score of diarrhea calves by improving the blood indexes, biochemical indexes, and blood metabolites. And it is a potential medicine for the treatment of calf diarrhea.
Assuntos
Pueraria , Animais , Bovinos , Diarreia/tratamento farmacológico , Diarreia/veterinária , Antibacterianos , Ácido Láctico , MetabolômicaRESUMO
This study evaluated the protective effect of Bacillus subtilis HH2 on beagles orally challenged with enterotoxigenic Escherichia coli (ETEC). We assessed the physiological parameters and the severity of diarrhea, as well as the changes in three serum immunoglobulins (IgG, IgA, and IgM), plasma diamine oxidase (DAO), D-lactate (D-LA), and the fecal microbiome. Feeding B. subtilis HH2 significantly reduced the severity of diarrhea after the ETEC challenge (p < 0.05) and increased serum levels of IgG, IgA, and IgM (p < 0.01). B. subtilis HH2 administration also reduced serum levels of DAO at 48 h after the ETEC challenge (p < 0.05), but no significant changes were observed in D-LA (p > 0.05). Oral ETEC challenge significantly reduced the richness and diversity of gut microbiota in beagles not pre-fed with B. subtilis HH2 (p < 0.05), while B. subtilis HH2 feeding and oral ETEC challenge significantly altered the gut microbiota structure of beagles (p < 0.01). Moreover, 14 days of B. subtilis HH2 feeding reduced the relative abundance of Deinococcus-Thermus in feces. This study reveals that B. subtilis HH2 alleviates diarrhea caused by ETEC, enhances non-specific immunity, reduces ETEC-induced damage to the intestinal mucosa, and regulates gut microbiota composition.
RESUMO
Anemoside B4 has a good curative effect on cows with CM; however, its impact on their metabolic profiles is unclear. Based on similar somatic cell counts and clinical symptoms, nine healthy dairy cows and nine cows with CM were selected, respectively. Blood samples were collected from cows with mastitis on the day of diagnosis. Cows with mastitis were injected with anemoside B4 (0.05 mL/kg, once daily) for three consecutive days, and healthy cows were injected with the same volume of normal saline. Subsequently, blood samples were collected. The plasma metabolic profiles were analyzed using untargeted mass spectrometry, and the concentrations of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α) in serum were evaluated via ELISA. The cows with CM showed increased concentrations of IL-1ß, IL-6, and TNF-α (p < 0.05). After treatment with anemoside B4, the concentrations of IL-1ß, IL-6, and TNF-α were significantly decreased (p < 0.01). Untargeted metabolomics analysis showed that choline, glycocholic acid, PC (18:0/18:1), 20-HETE, PGF3α, and oleic acid were upregulated in cows with CM. After treatment with anemoside B4, the concentrations of PC (16:0/16:0), PC (18:0/18:1), linoleic acid, eicosapentaenoic acid, phosphorylcholine, and glycerophosphocholine were downregulated, while the LysoPC (14:0), LysoPC (18:0), LysoPC (18:1), and cis-9-palmitoleic acid were upregulated. This study indicated that anemoside B4 alleviated the inflammatory response in cows with CM mainly by regulating lipid metabolism.
RESUMO
Dairy cows with ketosis have high circulating beta-hydroxybutyric acid (BHBA) concentrations alongside which inflammation is concomitantly developed. Tryptophan (Trp) is an essential amino acid that participates in the regulation of the inflammatory response. However, the association between Trp metabolism and inflammation in dairy cows with ketosis remains unclear. Therefore, blood samples from healthy (n = 10) and ketotic (n = 10) primiparous dairy cows were collected at the calving date and the day of ketosis diagnosis (7 days in milk (7 DIM)). Serum levels of non-esterified fatty acids (NEFA), BHBA, haptoglobin (HP), serum amyloid A (SAA), lipopolysaccharide, and cortisol were analyzed. Tryptophan and its metabolites were quantified using liquid chromatography-tandem mass spectrometry. At 7 DIM, the concentrations of NEFA, BHBA, HP, and SAA were higher and the levels of Trp, kynurenine (KYN), indoleacetic acid, indole-3-lactic acid, and 3-indoxyl sulfate were lower in the dairy cows with ketosis compared with those in the healthy cows. However, the KYN/Trp and melatonin/Trp ratios increased in the cows with ketosis. At the calving date, the serum lipopolysaccharide levels did not differ between the healthy and ketotic cows, whereas the levels of NEFA, HP, and cortisol increased in the ketotic cows. Correlation analysis showed that Trp deficiency and elevated Trp metabolism in the dairy cows occurred during ketosis. Overall, our results suggest that abnormal Trp metabolism may contribute to the pathogenesis of ketosis.
RESUMO
BACKGROUND: Adipose-derived mesenchymal stem cells (ADMSCs) and their extracellular vesicles (EVs) are a promising source of therapies for ischaemia-reperfusion (IR) because of their potent anti-inflammatory and immunomodulatory properties. OBJECTIVES: The aims of this study were to explore the therapeutic efficacy and potential mechanism of ADMSC-EVs in canine renal IR injury. METHODS: Mesenchymal stem cells (MSCs) and EVs were isolated and characterised for surface markers. A canine IR model administered with ADMSC-EVs was used to evaluate therapeutic effects on inflammation, oxidative stress, mitochondrial damage and apoptosis. RESULTS: CD105, CD90 and beta integrin ITGB were positively expressed in MSCs, while CD63, CD9 and intramembrane marker TSG101 were positively expressed in EVs. Compared with the IR model group, there was less mitochondrial damage and reduction in quantity of mitochondria in the EV treatment group. Renal IR injury led to severe histopathological lesions and significant increases in biomarkers of renal function, inflammation and apoptosis, which were attenuated by the administration of ADMSC-EVs. CONCLUSIONS: Secretion of EVs by ADMSCs exhibited therapeutic potential in renal IR injury and may lead to a cell-free therapy for canine renal IR injury. These findings revealed that canine ADMSC-EVs potently attenuate renal IR injury-induced renal dysfunction, inflammation and apoptosis, possibly by reducing mitochondrial damage.
Assuntos
Doenças do Cão , Vesículas Extracelulares , Células-Tronco Mesenquimais , Traumatismo por Reperfusão , Animais , Cães , Rim/fisiologia , Vesículas Extracelulares/patologia , Inflamação/veterinária , Traumatismo por Reperfusão/terapia , Traumatismo por Reperfusão/veterinária , Traumatismo por Reperfusão/patologia , Doenças do Cão/patologiaRESUMO
BACKGROUND: Staphylococcus arlettae is a rarely reported coagulase-negative staphylococcus (CoNS) isolated from infected humans and livestock. Observing phage-bacteria interaction could improve the understanding of bacterial pathogenetic mechanisms, providing foundational evidence for phage therapy or phage detection. Herein, we aimed to characterise and annotate a novel bacteriophage, vB_SarS_BM31 (BM31), specific to S. arlettae. This bacteriophage was isolated from a milk sample associated with bovine mastitis and collected in the Sichuan Province, China. RESULTS: The BM31 genome comprised a linear double-stranded DNA of 42,271 base pair in length with a G + C content of 34.59%. A total of 65 open reading frames (ORFs) were assembled from phage DNA, of which 29 were functionally annotated. These functional genes were divided into four modules: the structural, DNA packing and replication, lysis, and lysogeny modules. Holin (ORF25), lysin (ORF26), and integrase (ORF28) were located closely in the entire BM31 genome and were important for lyse or lysogeny cycle of BM31. The phage was identified as a temperate phage according to whole genome analysis and life cycle assay, with basic biological characteristics such as small burst size, short latency period, and narrow host range, consistent with the characteristics of the family Siphoviridae, subcluster B14 of the Staphylococcus bacteriophage. CONCLUSIONS: The present isolation and characterisation of BM31 contributes to the Staphylococcus bacteriophage database and provides a theoretical foundation for its potential applications. To the best of our knowledge, BM31 is the only shared and completely reported phage against S. arlettae in the entire public database.
Assuntos
DNA Viral , Genoma Viral , Animais , Bovinos , Feminino , Humanos , Análise de Sequência de DNA , DNA Viral/genética , DNA Viral/química , Staphylococcus/genética , Fagos de Staphylococcus/genéticaRESUMO
Recent studies showed that Escherichia coli (E. coli) strains isolated from captive giant pandas have serious resistance to antibiotics and carry various antibiotic resistance genes (ARGs). ARGs or virulence-associated genes (VAGs) carried by antibiotic-resistant E. coli are considered as a potential health threat to giant pandas, humans, other animals and the environment. In this study, we screened ARGs and VAGs in 84 antibiotic-resistant E. coli strains isolated from clinically healthy captive giant pandas, identified the association between ARGs and VAGs and analyzed the phylogenetic clustering of E. coli isolates. Our results showed that the most prevalent ARG in E. coli strains isolated from giant pandas is blaTEM (100.00%, 84/84), while the most prevalent VAG is fimC (91.67%, 77/84). There was a significant positive association among 30 pairs of ARGs, of which the strongest was observed for sul1/tetC (OR, 133.33). A significant positive association was demonstrated among 14 pairs of VAGs, and the strongest was observed for fyuA/iroN (OR, 294.40). A positive association was also observed among 45 pairs of ARGs and VAGs, of which the strongest was sul1/eaeA (OR, 23.06). The association of ARGs and mobile gene elements (MGEs) was further analyzed, and the strongest was found for flor and intI1 (OR, 79.86). The result of phylogenetic clustering showed that the most prevalent group was group B2 (67.86%, 57/84), followed by group A (16.67%, 14/84), group D (9.52%, 8/84) and group B1 (5.95%, 5/84). This study implied that antibiotic-resistant E. coli isolated from captive giant pandas is a reservoir of ARGs and VAGs, and significant associations exist among ARGs, VAGs and MGEs. Monitoring ARGs, VAGs and MGEs carried by E. coli from giant pandas is beneficial for controlling the development of antimicrobial resistance.
RESUMO
The placenta contains multiple biologically active substances, which exert antioxidation, anti-inflammatory, immunomodulatory, and delayed aging effects. Its extract can improve hepatic morphology and function: on the one hand, it can reduce liver interstitial collagen deposition, lipogenesis, and inflammatory cell infiltration and improve fibrosis; on the other hand, it can prevent hepatocellular degeneration by scavenging reactive oxygen species (ROS) and inhibiting inflammatory cytokine production, further improve hepatocyte apoptosis and necrosis, and promote hepatocyte regeneration, making it a promising liver-protective agent. Current research on placenta extract (PE) mainly focuses on treating a specific type of liver injury, and there are no systematic reports. Therefore, this review comprehensively summarizes the treatment reports of PE on liver injury and analyzes its mechanism of action.