Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1372449, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783945

RESUMO

Ischemia/reperfusion (IR) can induce deleterious responses such as apoptosis, inflammation, and oxidative stress; however, there are currently no efficient therapeutics to treat IR brain injury. Dragon's blood (DB) plays a significant role in treating ischemic stroke in China. Borneol (B) is an upper ushering drug that guides drugs to the target organs, including the brain. Therefore, we hypothesized that the combination of DB and B (DB + B) would provide cooperative therapeutic benefits for IR brain injury. To confirm this, we first investigated the protective effect of DB + B in an IR brain injury rat model using the modified neurological severity score (mNSS), infarction size measure, HE staining, and laser speckle contrast imaging. Then, we comprehensively evaluated the mechanism of DB + B in ameliorating IR brain injury based on RNA sequencing, serum untargeted metabolomics, and 16S rRNA sequencing. We have confirmed that DB + B enhanced the efficacy of the ischemic stroke treatment compared to DB or B alone for the first time. Our study provisionally confirms that the mechanism by which DB + B prevents IR brain injury is related to the maintenance of intestinal microecological balance and regulation of metabolic dysfunction, thereby suppressing inflammation and regulating immunity. DB + B may effectively regulate intestinal flora including o_Pseudomonadales, s_Bacteroides_caecimuris, o_unidentified_Bacilli, f-Pseudomonadaceae, and g-Pseudomonas, mainly regulate serum metabolites including improve the protective benefit of IR brain injury lysoPCs and lysoPEs, thus inhibiting TLR4/MyD88/NF-κB and IL-17 signing pathway to reduce inflammatory reactions. hat this mechanism is associated with the maintenance of intestinal flora balance and the regulation of metabolic dysfunction, thereby suppressing inflammation and regulating immunity. This provides scientific support for the clinical translation of DB + B in the prevention and treatment of ischemic stroke and establishes a basis for further investigation of its therapeutic mechanism.

2.
Sci Rep ; 14(1): 5121, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429386

RESUMO

Optimization of magnetic coupling mechanism is an important way to improve the performance of a dynamic wireless power transfer system. Inspired by the common radial magnetic core for circular coils, a new radial magnetic core for rectangular coils is adopt. Through simulation and experimental results comparison, which has higher coupling coefficient with the same core area. Combined with the magnetic circuit analysis, the magnetic flux leakage and conduction regions are divided into magnetic fluxes with different shapes, which magnetic resistances are calculated respectively. Based on the simulation results, parameter distributions of fluxes under different conditions are obtained. Therefore, the expressions of the coupling coefficient k of the adopt magnetic cores and coils and the design parameters of coils and cores are obtained. Taking the maximum k and the minimum rate of change of coupling coefficient with 100 mm displacement as the optimization objectives, a multi-objective optimization solution is carried out by using NSGA-II algorithm. The coil optimization scheme is obtained and verified by experiments. k and Δk are 0.442 and 6.8% respectively, and the errors are less than 5%. In the optimization process, there is no simulation model constructed. The optimization modeling combined of magnetic field segmentation method and parameter fitting has lower complexity and calculation time of optimization.

3.
Future Microbiol ; 19: 227-239, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38270125

RESUMO

Aims: Extracellular vesicles from Lacticaseibacillus paracasei PC-H1 have antiproliferative activity of colon cells, but the effect on glycolytic metabolism of cancer cell remains enigmatic. The authors investigated how Lacticaseibacillus paracasei extracellular vesicles (LpEVs) inhibit the growth of colon cancer cells by affecting tumor metabolism. Materials & methods: HCT116 cells were treated with LpEVs and then differentially expressed genes were analyzed by transcriptome sequencing, the sequencing results were confirmed in vivo and in vitro. Results: LpEVs entered colon cancer cells and inhibited their growth. Transcriptome sequencing revealed differentially expressed genes were related to glycolysis. Lactate production, glucose uptake and lactate dehydrogenase activity were significantly reduced after treatment. LpEVs also reduced HIF-1α, GLUT1 and LDHA expression. Conclusion: LpEVs exert their antiproliferative activity of colon cancer cells by decreasing HIF-1α-mediated glycolysis.


Assuntos
Neoplasias do Colo , Vesículas Extracelulares , Lacticaseibacillus paracasei , Humanos , Glicólise , Ácido Láctico/farmacologia , Ácido Láctico/metabolismo , Linhagem Celular Tumoral
4.
Eur Radiol ; 33(11): 8046-8054, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37256350

RESUMO

OBJECTIVES: To evaluate the use of diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) for detection of microstructural changes in the trigeminal nerves of trigeminal neuralgia (TN) patients. METHODS: Forty TN patients and 40 healthy controls were examined using 3 T magnetic resonance imaging (MRI) to evaluate DTI and DKI parameters in trigeminal nerves. One-way ANOVA was used to test the differences in age, sex, and DTI and DKI parameters between the TN-affected sides, TN-unaffected sides, and controls. For parameters with inter-group differences, pairwise comparisons were performed. Then, the difference ratios (DRs) of the parameters with statistical differences were calculated and used for the receiver operating characteristic (ROC) analysis to assess their diagnostic performance. In addition, for the DTI and DKI parameter values with differences, we used pure DTI and DKI values to perform the ROC analysis. RESULTS: Compared to the unaffected sides and controls, the FA, MK, and Kr of the affected sides of TN patients were significantly reduced, while ADC was significantly increased (p < 0.05). The diagnostic efficiency of the FA DRs (AUC: 0.974; cutoff value: 0.038; sensitivity: 100%; specificity: 95.0%) was the highest among all DTI and DKI parameters. The DRs of FA and MK more efficiently diagnosed TN than pure FA and MK values. CONCLUSIONS: DTI and DKI allowed detection of microstructural changes in TN-affected trigeminal nerves. FA DR was the best independent predictor of microstructural changes in TN. CLINICAL RELEVANCE STATEMENT: Both DTI and DKI can be used for noninvasive quantitative evaluation of the changes in the microstructure of the cisternal segment of the cranial nerves in clinical practice. KEY POINTS: • Diffusion tensor imaging (DTI) can be used to evaluate the in vivo integrity of white matter and nerve fiber pathway. • Diffusion kurtosis imaging (DKI) has been shown to be considerable sensitive to microstructural changes. • DTI combined with DKI can comprehensively evaluate the status of the TN-affected trigeminal nerve.


Assuntos
Neuralgia do Trigêmeo , Substância Branca , Humanos , Neuralgia do Trigêmeo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Nervo Trigêmeo/diagnóstico por imagem , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA