Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0303857, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820516

RESUMO

Global food security basically depends on potential yields of staple grain crops worldwide, especially under climate change. However, most scholars use various models of production function in which climatic factors are often considered to estimate crop yield mostly at local or regional level. Therefore, in this paper: Potential yields of rice, wheat, maize and soybean worldwide by 2030 are projected creatively using Auto-regressive Integrated Moving Average and Trend Regressed (ARIMA-TR) model in which actual yields in recent two years are used for testing the reliability of projection and Gray System (GS) model for validating the test; Especially individual impacts of climate change on the productions of rice, wheat, maize and soybean worldwide since 1961 are analyzed by using unary regression model in which global mean temperature and land precipitation are independent variable while the yield of crop being dependent one, respectively. Results show that: by 2030, the ratio between average and top yields of world rice is projected to be 50.6% increasing, while those of world wheat, world maize and world soybean are projected to be 38.0% increasing, 14.7% decreasing and 72.5% increasing, respectively. Since 1961 global warming has exerted a negative impact on average yield of world rice less than on its top, a positive effect on average yield of world wheat while a negative impact on its top, a positive effect on average yield of world maize less than on its top, and a positive influence on average yield of world soybean while a negative one on its top, which might be slightly mitigated by 'Carbon Peak' target. The fluctuation of global rainfall contributes to the productions of these crops much less than global warming during same period. Our findings indicate that: to improve global production of four staple grain crops by 2030, the priorities of input should be given to either rice or wheat in both high and low yield countries, whereas to maize in high yield countries and to soybean in low yield countries. These insights highlight some difference from previous studies, and provide academia with innovative comprehension and policy-decision makers with supportive information on sustainable production of these four staple grain crops for global food security under climate change in the future.


Assuntos
Mudança Climática , Produtos Agrícolas , Oryza , Triticum , Zea mays , Produtos Agrícolas/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Grão Comestível/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , Aquecimento Global
2.
J Environ Manage ; 321: 116047, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36104875

RESUMO

Ecosystem services (ESs) have been widely used for ecological protection and land spatial planning. Natural and anthropogenic drivers exhibit a strong dynamic coupling relationship with ESs. However, current ESs-related research focused on mapping the ESs spatially or investing the trade-offs and synergies relationship between ES, ignoring the nonlinear response of ESs to natural and anthropogenic drivers. Here we aimed to investigate the nonlinear effect of 14 potential drivers (8 natural and 6 anthropogenic) on the total value of six typical ESs (ESV). Taking Beijing-Tianjin-Hebei urban agglomeration (BTH) in China as an example, we established 14 constrain lines and identified critical thresholds through the restricted cubic splines (RCS) regression. We found strong non-linear impacts of natural and anthropogenic drivers on ESV and critical thresholds existed among all the 14 constrain lines. The RCS plots showed that the overall ESV was kept at a high level before or after certain thresholds (e.g., altitude >687 m, slope >13.4°, NDVI >0.7, distance from water <31.2 km, etc.). We categorized these threshold combinations and found the potentially high ES delivery areas were mainly distributed in the Yanshan Mountian, accounting for approximately 5% of the total BTH region. These critical thresholds offer a new method to delineate conservation and restoration priority areas.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Altitude , Pequim , China
3.
Water Res ; 220: 118723, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35696806

RESUMO

Biological carbon pump (BCP) in karst areas has received intensive attention for years due to their significant contribution to the global missing carbon sink. The stability of autochthonous dissolved organic matter (Auto-DOM) produced by BCP in karst aquatic ecosystems may play a critical role in the missing carbon sink. However, the source of dissolved organic matter (DOM) in inland waters and its consumption by planktonic bacteria have not been thoroughly examined. Recalcitrant dissolved organic matter (RDOM) may exist in karst aquatic ecosystem as in the ocean. Through the study of the chromophoric dissolved organic matter (CDOM) and the interaction between CDOM and the planktonic bacterial community under different land uses at the Shawan Karst Water-carbon Cycle Test Site, SW China, we found that C2, as the fluorescence component of Auto-DOM mineralised by planktonic bacteria, may have some of the characteristics of RDOM and is an important DOM source in karst aquatic ecosystems. The stability ratio (Fmax(C2/(C1+C2))) of Auto-DOM reached 89.6 ± 6.71% in winter and 64.1 ± 7.19% in spring. Moreover, correlation-based network analysis determined that the planktonic bacterial communities were controlled by different fluorescence types of CDOM, of which C1 (fresh Auto-DOM), C3 (conventional allochthonous DOM (Allo-DOM)) and C4 (the Allo-DOM mineralised by bacteria) were clustered in one module together with prevalent organic-degrading planktonic bacteria; C2 was clustered in another tightly combined module, suggesting specific microbial utilization strategies for the C2 component. In addition, some important planktonic bacterium and functional genes (including chemotrophic heterotrophs and photosynthetic bacteria) were found to be affected by high Ca2+ and dissolved inorganic carbon (DIC) concentrations in karst aquatic ecosystems. Our research showed that Auto-DOM may be as an important carbon sink as the Allo-DOM in karst ecosystems, the former generally being neglected based on a posit that it is easily and first mineralized by planktonic bacteria.


Assuntos
Matéria Orgânica Dissolvida , Ecossistema , Bactérias , Carbono , Estações do Ano , Espectrometria de Fluorescência
4.
J Environ Manage ; 281: 111875, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33378737

RESUMO

Alpine grasslands on the Qinghai-Tibetan Plateau are sensitive and vulnerable to climate change and human activities. Climate warming and overgrazing have already caused degradation in a large fraction of alpine grasslands on this plateau. However, it remains unclear how human activities (mainly livestock grazing) regulates vegetation dynamics under climate change. Here, alpine grassland productivity (substituted with the normalized difference vegetation index, NDVI) is hypothesized to vary in a nonlinear trajectory to follow climate fluctuations and human disturbances. With generalized additive mixed modelling (GAMM) and residual-trend (RESTREND) analysis together, both magnitude and direction of climatic (in terms of temperature, precipitation, and radiation) and anthropogenic impacts on NDVI variation were examined across alpine meadows, steppes, and desert-steppes on the Qinghai-Tibetan Plateau. The results revealed that accelerating warming and greening, respectively, took place in 76.2% and 78.8% of alpine grasslands on the Qinghai-Tibetan Plateau. The relative importance of temperature, precipitation, and radiation impacts was comparable, between 20.4% and 24.8%, and combined to explain 66.2% of NDVI variance at the pixel scale. The human influence was strengthening and weakening, respectively, in 15.5% and 14.3% of grassland pixels, being slightly larger than any sole climatic variable across the entire plateau. Anthropogenic and climatic factors can be in opposite ways to affect alpine grasslands, even within the same grassland type, likely regulated by plant community assembly and species functional traits. Therefore, the underlying mechanisms of how plant functional diversity regulates nonlinear ecosystem response to climatic and anthropogenic stresses should be carefully explored in the future.


Assuntos
Ecossistema , Pradaria , Animais , Mudança Climática , Humanos , Dinâmica não Linear , Tibet
5.
Environ Res ; 182: 109009, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31846896

RESUMO

Watersheds are coupled with human-water systems where human, and water resources interact and coevolve with each other. Restoration management not only affects the ecosystem itself but also alters the mutual feedback relationship between humans and water, resulting in additional effects and impeding the ecological restoration process. Taking the lower reaches of the Heihe River as an example (Inner Mongolia, PR China), this study investigated the evolution of the human-water system after the implementation of ecological water conveyance using multiple data sources (e.g., remote sensing data, hydrological data, field data and socioeconomic data). We found that (1) after the implementation of ecological water conveyance, vegetation recovered in the last 15 years with an NDVI increasing from 0.10 to 0.13 across the region except some degraded areas near the river; (2) besides restoring the target ecosystem, ecological water conveyance also promoted socioeconomic development and affected the water resources utilization; (3) after 15 years' water conveyance, the coupled human-water system changed from the early ecological water deficit to the present ecological-socioeconomic water-use trade-off with negative impact resulted from agriculture expansion and water usage conflict between the middle and the lower reaches. These effects impeded the restoration of the ecological environment and aggravated the conflicts of water resources utilization within the whole Heihe watershed, consistent with of the hypothesized disturbance effect transmutation. Our results highlighted that analysis on the mutual feedback effect in the coupled human-water system, and dynamic adjustments for restoration measures are needed for sustainable watershed management.


Assuntos
Ecossistema , Recursos Hídricos , Água , China , Conservação dos Recursos Naturais , Humanos , Rios
6.
Biosens Bioelectron ; 94: 552-559, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28363193

RESUMO

The detection of microRNA plays an important role in early cancer diagnosis. Herein, a dual-mode electronic biosensor was developed for microRNA-21 (miRNA-21) detection based on gold nanoparticle-decorated MoS2 nanosheet (AuNPs@MoS2). A classical DNA "sandwich" structure was employed to construct MoS2-based electrochemical sensor, including capture DNA, target miRNA-21 and DNA-modified nanoprobe. [Fe(CN)6]3-/4- and [Ru(NH3)6]3+ were selected as electrochemical indicators to monitor the preparation process and evaluate the performance of MoS2-based electrochemical biosensor by electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV), respectively. Such MoS2-based biosensor exhibited excellent performance for miRNA-21 detection in the range from 10 fM to 1nM with detection limit of 0.78fM and 0.45fM for DPV and EIS technique, respectively. Furthermore, the proposed MoS2-based biosensor displayed high selectivity and stability, which could be used to determine miRNA-21 in human serum samples with satisfactory results. All data suggested that such MoS2-based nanocomposite may be a potential candidate for biosensing ranging from nucleic acid to protein detection.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , MicroRNAs/isolamento & purificação , DNA/química , Dissulfetos/química , Ouro/química , Humanos , Limite de Detecção , MicroRNAs/sangue , MicroRNAs/química , Molibdênio/química , Nanocompostos/química
7.
ACS Appl Mater Interfaces ; 8(11): 6826-33, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26938994

RESUMO

A MoS2-based electrochemical aptasensor has been developed for the simultaneous detection of thrombin and adenosine triphosphate (ATP) based on gold nanoparticles-decorated MoS2 (AuNPs-MoS2) nanocomposites. Two different aptamer probes labeled with redox tags were simultaneously immobilized on an AuNPs-MoS2 film modified electrode via Au-S bonds. The aptamers presented structural switches with the addition of target molecules (thrombin and ATP), resulting in methylene blue (MB) far from or ferrocene (Fc) close to the electrode surface. Therefore, a dual signaling detection strategy was developed, which featured both "signal-on" and "signal-off" elements in the detection system because of the target-induced structure switching. This proposed aptasensor could simultaneously determine ATP and thrombin as low as 0.74 nM ATP and 0.0012 nM thrombin with high selectivity, respectively. In addition, thrombin and ATP could act as inputs to activate an AND logic gate.


Assuntos
Trifosfato de Adenosina/análise , Técnicas Biossensoriais/métodos , DNA/química , Dissulfetos/química , Ouro/química , Membranas Artificiais , Molibdênio/química , Nanoestruturas/química , Trombina/análise , Eletrodos , Humanos
8.
J Mater Chem B ; 4(10): 1757-1769, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32263053

RESUMO

Detection of nucleic acid and protein targets related to human health and safety has attracted widespread attention. Surface-enhanced Raman scattering (SERS) is a powerful tool for biomarker detection because of its ultrahigh detection sensitivity and unique fingerprinting spectra. In this review, we first introduce the development of nanostructure-based SERS-active substrates and SERS nanotags, which greatly influence the performance of SERS biosensors. We then focus on recent advances in SERS biosensors for DNA, microRNA and protein determination, including label-free, labeled and multiplex analyses as well as in vivo imaging. Finally, the prospects and challenges of such nanostructure-based SERS biosensors are discussed.

9.
Dalton Trans ; 42(32): 11367-70, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23839280

RESUMO

Here, we report on a surfactant-thermal method to prepare four new 3-D crystalline heterometal-organic frameworks (HMOFs). The results indicate that our new strategy for growing crystalline materials in surfactant media has great potential for the synthesis of novel MOFs with various structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA