Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Zhen Ci Yan Jiu ; 46(12): 1005-10, 2021 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-34970876

RESUMO

OBJECTIVE: To observe the effect of electroacupuncture (EA) on motor function, serum Cystatin C (Cys C) content, and expressions of tumour necrosis factor-α (TNF-α) and nuclear factor-kappa B (NF-κB) in renal tissue of rats with acute cerebral infarction (ACI), so as to explore its underlying mechanisms in protecting renal tissue after ACI. METHODS: Seventy-two male SD rats were randomly divided into three groups: sham operation, model and EA groups which were further randomly allocated to 1 d, 3 d, 7 d and 14 d subgroups (n=6 per subgroup). The ACI model was established by occlusion of the middle cerebral artery (MCAO). Rats of the EA group received EA of "Neiguan" (PC6) and "Zusanli" (ST36) for 30 min, once daily for 1, 3, 7 and 14 days, respectively. The motor function and content of Cys C were determined on the 1st, 3rd, 7th and 14th day after ACI. The expressions of TNF-α and NF-κB were detected by immunohistochemistry. RESULTS: Compared with the sham operation group, the motor function scores and the content of Cys C increased significantly on the 1st, 3rd, 7th and 14th d (P<0.01), while the numbers of TNF-α and NF-κB positive cells of the model group increased significantly on the 3rd, 7th and 14th d (P<0.01). After EA treatment, the motor function scores and the content of Cys C on the 7th, and 14th d, and the numbers of TNF-α and NF-κB positive cells on the 3rd, 7th and 14th d obviously decreased (P<0.05). CONCLUSION: EA at PC6 and ST36 can improve motor function and alleviate renal injury in ACI rats, possibly by regulating the expression of TNF-α, NF-κB in renal tissue and Cys C in serum.


Assuntos
Eletroacupuntura , Animais , Infarto Cerebral/genética , Infarto Cerebral/terapia , Masculino , NF-kappa B/genética , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/genética
2.
Mol Plant ; 9(5): 722-736, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-26854849

RESUMO

In Papilionoideae legume, Lotus japonicus, the development of dorsal-ventral (DV) asymmetric flowers is mainly controlled by two TB1/CYCLOIDEA/PCF (TCP) genes, SQUARED STANDARD (SQU) and KEELED WINGS IN LOTUS (KEW), which determine dorsal and lateral identities, respectively. However, the molecular basis of how these two highly homologous genes orchestrate their diverse functions remains unclear. Here, we analyzed their expression levels, and investigated the transcriptional activities of SQU and KEW. We demonstrated that SQU possesses both activation and repression activities, while KEW acts only as an activator. They form homo- and heterodimers, and then collaboratively regulate their expression at the transcription level. Furthermore, we identified two types of post-transcriptional modifications, phosphorylation and ATP/GTP binding, both of which could affect their transcriptional activities. Mutations in ATP/GTP binding motifs of SQU and KEW lead to failure of phosphorylation, and transgenic plants bearing the mutant proteins display defective DV asymmetric flower development, indicating that the two conjugate modifications are essential for their diverse functions. Altogether, SQU and KEW activities are precisely modulated at both transcription and post-transcription levels, which might link DV asymmetric flower development to different physiological status and/or signaling pathways.


Assuntos
Flores/crescimento & desenvolvimento , Flores/metabolismo , Lotus/crescimento & desenvolvimento , Lotus/metabolismo , Proteínas de Plantas/metabolismo , Trifosfato de Adenosina/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Guanosina Trifosfato/metabolismo , Lotus/genética , Mutação/genética , Fosforilação/genética , Fosforilação/fisiologia , Proteínas de Plantas/genética , Ligação Proteica/genética , Ligação Proteica/fisiologia , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia
3.
J Integr Plant Biol ; 55(3): 221-31, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23009172

RESUMO

CYCLOIDEA (CYC)-like TCP genes play key roles in dorsoventral differentiation of zygomorphic flowers in Papilionoideae legumes. In this study, we analyzed the kew mutants whose flowers lost lateral identity, and investigated the diverse functions of three LjCYC genes during zygomorphic flower development in the model legume Lotus japonicus. We showed that kew1 and kew3 are allelic mutants of LjCYC3, a CYC-like TCP gene. Through transgenic experiments, it was shown that LjCYC1 possesses dorsal activity similar to LjCYC2, and that LjCYC3 alone is sufficient to confer lateral activity, and an epistatic effect between dorsal and lateral activities was identified. Sequence analysis revealed a striking alteration at the 3' end of the LjCYC3 open reading frame (ORF) in comparison with those of LjCYC1 and LjCYC2 ORFs. Furthermore, it was found that LjCYC proteins could interact with each other and possess different activities by means of a transcriptional activity assay. Our data demonstrate that the sequence variation and the subsequent alteration of protein property play important roles in the functional diversity of different LjCYC genes in controlling zygomorphic flower development in Lotus japonicus.


Assuntos
Flores/crescimento & desenvolvimento , Flores/metabolismo , Lotus/crescimento & desenvolvimento , Lotus/metabolismo , Proteínas de Plantas/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Lotus/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo
4.
Plant Physiol ; 152(2): 797-807, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19955265

RESUMO

The endogenous trans-acting small interfering RNA (ta-siRNA) pathway plays a conserved role in adaxial-abaxial patterning of lateral organs in simple-leafed plant species. However, its function in compound-leafed species is largely unknown. Using the compound-leafed species Lotus japonicus, we identified and characterized two independent mutants, reduced leaflet1 (rel1) and rel3, whose most conspicuous defects in compound leaves are abaxialized leaflets and reduction in leaflet number. Concurrent mutations in REL genes also compromise flower development and result in radial symmetric floral organs. Positional cloning revealed that REL1 and REL3 encode the homologs of Arabidopsis (Arabidopsis thaliana) SUPPRESSOR OF GENE SILENCING3 and ARGONAUTE7/ZIPPY, respectively, which are key components of the ta-siRNA pathway. These observations, together with the expression and functional data, demonstrated that the ta-siRNA pathway plays conserved yet distinct roles in the control of compound leaf and flower development in L. japonicus. Moreover, the phenotypic alterations of lateral organs in ta-siRNA-deficient mutants and the regulation of downstream targets by the ta-siRNA pathway in L. japonicus were similar to those in the monocots but different from Arabidopsis, indicating many parallels between L. japonicus and the monocots in the control of lateral organ development by the ta-siRNA pathway.


Assuntos
Flores/crescimento & desenvolvimento , Lotus/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , RNA Interferente Pequeno , Proteínas de Arabidopsis , Sequência de Bases , Mapeamento Cromossômico , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Lotus/crescimento & desenvolvimento , Lotus/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Alinhamento de Sequência
5.
Proc Natl Acad Sci U S A ; 103(13): 4970-5, 2006 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-16549774

RESUMO

Zygomorphic flowers, with bilateral (dorsoventral) symmetry, are considered to have evolved several times independently in flowering plants. In Antirrhinum majus, floral dorsoventral symmetry depends on the activity of two TCP-box genes, CYCLOIDEA (CYC) and DICHOTOMA (DICH). To examine whether the same molecular mechanism of floral asymmetry operates in the distantly related Rosid clade of eudicots, in which asymmetric flowers are thought to have evolved independently, we investigated the function of a CYC homologue LjCYC2 in a papilionoid legume, Lotus japonicus. We showed a role for LjCYC2 in establishing dorsal identity by altering its expression in transgenic plants and analyzing its mutant allele squared standard 1 (squ1). Furthermore, we identified a lateralizing factor, Keeled wings in Lotus 1 (Kew1), which plays a key role in the control of lateral petal identity, and found LjCYC2 interacted with Kew1, resulting in a double mutant that bore all petals with ventralized identity to some extents. Thus, we demonstrate that CYC homologues have been independently recruited as determinants of petal identities along the dorsoventral axis in two distant lineages of flowering plants, suggesting a common molecular origin for the mechanisms controlling floral zygomorphy.


Assuntos
Flores/anatomia & histologia , Flores/crescimento & desenvolvimento , Lotus/anatomia & histologia , Lotus/crescimento & desenvolvimento , Alelos , Sequência de Aminoácidos , Sequência Conservada , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Lotus/genética , Lotus/metabolismo , Dados de Sequência Molecular , Mutação/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA