Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(10): e2307119, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875768

RESUMO

Shelter forests (or shelter-belts), while crucial for climate regulation, lack monitoring systems, e.g., Internet of Things (IoT) devices, but their abundant wind energy can potentially power these devices using the trees as mounting points. To harness wind energy, an omnidirectional fluid-induced vibration triboelectric nanogenerator (OFIV-TENG) has been developed. The device is installed on shelter forest trees to harvest wind energy from all directions, employing a fluid-induced vibration (FIV) mechanism (fluid-responding structure) that can capture and use wind energy, ranging from low wind speeds (vortex vibration) to high wind speeds (galloping). The rolling-bead triboelectric nanogenerator (TENG) can efficiently harvest energy while minimizing wear and tear. Additionally, the usage of double electrodes results in an effective surface charge density of 21.4 µC m-2 , which is the highest among all reported rolling-bead TENGs. The collected energy is utilized for temperature and humidity monitoring, providing feedback on the effect of climate regulation in shelter forests, alarming forest fires, and wireless wind speed warning. In general, this work provides a promising and rational strategy, using natural resources like trees as the supporting structures, and shows broad application prospects in efficient energy collection, wind speed warning, and environmentally friendliness.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38019043

RESUMO

The monitoring of space debris assumes paramount significance to ensure the sustainability and security of space activities as well as underground bases in outer space. However, designing a wide range monitoring system with easy fabrication, low power, and high precision remains an urgent challenge under the scarcity of materials and extreme environment conditions of outer space. Here, we designed a one-piece, robust, but flexible, and repairable 3D metal-printed triboelectric nanogenerator (FR-TENG) by incorporating the advantages of standardization and customization of outer space 3D metal printing. Inspired by the structure of hexagonal and pangolin scales, a curved structure is ingeniously applied in the design of 3D printed metal to adapt different curved surfaces while maintaining superior compressive strength, providing excellent flexibility and shape adaptability. Benefiting from the unique structural design, the FR-TENG has a minimum length of 1 cm with a weight of only 3.5 g and the minimum weight resolution detected of 9.6 g, with a response time of 20 ms. Furthermore, a multichannel self-powered collision monitoring system has been developed to monitor minor collisions, providing warnings to determine potential impacts on the space station and bases surfaces. The system may contribute to ensuring the successful completion of space missions and providing a safer space environment for the exploration of extraterrestrial life and the establishment of underground protective bases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA