Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dalton Trans ; 53(14): 6399-6409, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38498319

RESUMO

A series of Tb3+-doped Sr2YTaO6 double perovskite phosphors (SYT:Tb3+) were synthesized using a conventional solid-state reaction method. A strong green emission was observed in the SYT:Tb3+ phosphors, and the optimal doping concentration of Tb3+ was confirmed to be 5 mol%. The electric dipole-dipole interaction was ascribed to be the main mechanism for the luminescence concentration quenching. Analysis of the concentration-dependent fluorescence decay confirmed that the self-generated quenching model holds for the dynamic process of Tb3+ decays in SYT. Furthermore, the internal quantum efficiencies, non-radiative transition rates, and energy transfer rates of the 5D4 level for the SYT:Tb3+ samples were estimated, respectively. The luminescence thermal stability of the sample was also evaluated based on the Arrhenius model. The chromaticity shift of the SYT:5 mol% Tb3+ phosphor was examined to be 0.013 when the sample temperature was increased from 303 to 483 K, thus indicating excellent chromaticity shifting resistance under high temperature conditions. Moreover, the Judd-Ofelt parameters were calculated from the emission spectra of SYT:Tb3+ to be Ω2 = 0.29 × 10-20, Ω4 = 0.45 × 10-20, and Ω6 = 0.72 × 10-20 cm2, respectively. The fluorescence branching ratios and radiative transition rates for the 5D4 level were calculated based on the obtained Judd-Ofelt parameters. Finally, a white light-emitting diode (LED) prototype was assembled using a 310 nm LED chip combined with a prepared green SYT:Tb3+ phosphor and two other commercial blue and red phosphors. The obtained warm white light exhibits good chromaticity coordinates (0.32, 0.32) and a high color rendering index of 96.1. Based on the above results, it can be known that the prepared SYT:Tb3+ phosphors have a potential application as green emitting phosphors in white LEDs.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123830, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38184878

RESUMO

Anti-counterfeiting labels based on luminescence materials are a newly emerging technique for protecting legal goods and intellectual property. In the anti-counterfeiting field to prevent forgery and cloning, luminescence materials with properties different from the commercialized and traditional ones are in urgent need. In this work, multicolor-emitting Er3+ single-doped and Er3+/Yb3+ co-doped Zn2GeO4 phosphors combining static and dynamic identifications were developed in order to achieve advanced anti-counterfeiting application. The variation of trap content with increasing the doping content of rare earth ions was analyzed through X - ray photoelectron spectroscopy, thermoluminescence analysis. It was found that there are two types of traps with different depth in Zn2GeO4 phosphors. The depths of the traps were experimentally confirmed to be 0.68 and 0.79 eV, respectively. The transient photocurrent response measurement confirmed the existence of charge carriers, and the mechanism for long persistent luminescence was deduced. The multicolor upconversion mechanisms under 980 and 1550 nm excitation were also discovered. Based on the multicolor steady and transient emission features, an anti-counterfeiting pattern was designed using the phosphors. Static and dynamic identification was demonstrated and presented in detail. Finally, it is indicated that the studied phosphors are excellent candidates for potential applications in luminescence anti-counterfeiting labels.

3.
Light Sci Appl ; 13(1): 17, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38225231

RESUMO

Raising photoelectric conversion efficiency and enhancing heat management are two critical concerns for silicon-based solar cells. In this work, efficient Yb3+ infrared emissions from both quantum cutting and upconversion were demonstrated by adjusting Er3+ and Yb3+ concentrations, and thermo-manage-applicable temperature sensing based on the luminescence intensity ratio of two super-low thermal quenching levels was discovered in an Er3+/Yb3+ co-doped tungstate system. The quantum cutting mechanism was clearly decrypted as a two-step energy transfer process from Er3+ to Yb3+. The two-step energy transfer efficiencies, the radiative and nonradiative transition rates of all interested 4 f levels of Er3+ in NaY(WO4)2 were confirmed in the framework of Föster-Dexter theory, Judd-Ofelt theory, and energy gap law, and based on these obtained efficiencies and rates the quantum cutting efficiency was furthermore determined to be as high as 173% in NaY(WO4)2: 5 mol% Er3+/50 mol% Yb3+ sample. Strong and nearly pure infrared upconversion emission of Yb3+ under 1550 nm excitation was achieved in Er3+/Yb3+ co-doped NaY(WO4)2 by adjusting Yb3+ doping concentrations. The Yb3+ induced infrared upconversion emission enhancement was attributed to the efficient energy transfer 4I11/2 (Er3+) + 2F7/2 (Yb3+) → 4I15/2 (Er3+) + 2F5/2 (Yb3+) and large nonradiative relaxation rate of 4I9/2. Analysis on the temperature sensing indicated that the NaY(WO4)2:Er3+/Yb3+ serves well the solar cells as thermos-managing material. Moreover, it was confirmed that the fluorescence thermal quenching of 2H11/2/4S3/2 was caused by the nonradiative relaxation of 4S3/2. All the obtained results suggest that NaY(WO4)2:Er3+/Yb3+ is an excellent material for silicon-based solar cells to improve photoelectric conversion efficiency and thermal management.

4.
Inorg Chem ; 63(2): 1439-1448, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38178656

RESUMO

Low phonon tantalate-based phosphors with a layer structure are considered to have excellent upconversion luminescence (UCL) intensity, which could be reduced due to the existence of impure phase defects and inappropriate doped rare earth ions. To improve their UCL performance, we have prepared single-phase CaTa4O11:Er3+/Yb3+ samples by a molten salt synthesis (MSS) using KCl as the reaction medium and compared its UCL properties with counterparts made by a conventional solid-state reaction (SSR) in this study. We have demonstrated that the MSS samples have a much higher UCL intensity under 980 nm laser excitation than the SSR ones due to accurate replacement of Ca2+ sites by Er3+/Yb3+ in high-purity single-phase MSS samples. We have further enhanced the green UCL intensity of the MSS samples by 1.57 times via acid picking (AP). Under 980 nm laser excitation at a high powder density of 61.3 W/cm2, the green UCL intensity of the MSS-AP samples can reach 3.72 times that of the SSR-AP samples. For potential luminescence thermometry applications, the maximum absolute sensitivity (SA) of the MSS-AP samples reaches 0.01316 K-1 at 501 K based on the luminescence intensity ratio. This study shows that CaTa4O11:Er3+/Yb3+ phosphors prepared by the MSS method are single-phase samples with excellent pure green UCL as a suitable temperature sensing material.

5.
Dalton Trans ; 52(25): 8770-8777, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37317782

RESUMO

BiTa7O19:Er3+/Yb3+/Sb phosphors were successfully synthesized by high temperature solid sintering. X-ray diffraction (XRD), fluorescence spectrometry and X-ray photoelectron spectroscopy (XPS), were used to analyze the phase structure, upconversion luminescence (UCL) features and Sb valence state, respectively. The results suggest that polyvalent Sb with Sb3+ and Sb5+ can replace the Ta5+ sites in a BiTa7O19 host to form a pure phase. Compared with BiTa7O19:0.1Er3+/0.4Yb3+, polyvalent Sb doping further improves UCL intensity by 1.2 times under 980 nm laser stimulation with a powder density of 44.59 W cm-2. This is due to the adjustment of the local lattice structure of BiTa7O19 by the polyvalent Sb. The maximum absolute sensitivity (SA) and relative sensitivity (SR) can be estimated from the UCL variable-temperature spectra as 0.0098 K-1 at 356 K and 0.0078 K-1 at 303 K using the luminescence intensity ratio (LIR) approach. The outcomes show that host local lattice adjustment using polyvalent elements is an effective way to improve luminescence intensity, and it is possible to use BiTa7O19:Er3+/Yb3+/Sb as a temperature sensor.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122181, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36463625

RESUMO

The content of Cu2+ in lubricating oil and lubricant temperature are important indicators predicting mechanical failure. Therefore, developing a nontoxic fluorescence probe is necessary to detect Cu2+ and temperature in lubricating oil. The lead-free inorganic double perovskite nanocrystals (NCs) Cs2AgInCl6 are potential candidates. However, the low fluorescence intensity and the high excitation energy required of Cs2AgInCl6 NCs limit their practical applications. In this study, Bi3+ and Tb3+ were successfully co-doped into Cs2AgInCl6 NCs via the hot-injection method. The doping of Bi3+ produces a broad emission originating from self-trapped excitons and reduces the excitation energy, allowing commercial LEDs as excitation sources. Tb3+ ions doping offers characteristic emission peaks (5D0-7FJ) of Tb3+ ions and improves the fluorescence intensity of Cs2AgInCl6 NCs. Furthermore, the Cs2AgInCl6: Bi3+/Tb3+ NCs have been employed as optical thermometry, which provide a temperature calibration curve with the maximum absolute and relative sensitivities of 2.15% K-1 at 350 K and 2.25% K-1 at 303 K in the temperature range of 303-423 K, respectively. Finally, the nanocrystals have been applied to detect Cu2+ in lubricating oil. The fluorescent probe shows a good detection sensitivity of 8.94 × 10-4 nM-1 and a low detection limit of 14.3 nM in the range of 10-300 nM. This work not merely offers a novel way for improving the luminescence performances of double perovskite NCs Cs2AgInCl6, but broadens their potential for detection of Cu2+ and temperature.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 284: 121805, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36099726

RESUMO

In this study, intense red and extremely weak green up-conversion (UC) luminescence was obtained in BaGd2O4: x mol% Yb3+/y mol% Er3+ phosphors under the excitations of 980 nm and 1550 nm. The corresponding maximum integrated intensity ratios of the red to green UC emissions are 50.3 and 158.7, respectively. The UC luminescence mechanisms upon different excitations were discussed. It was confirmed that two-photon and three-photon processes were responsible for both the red and green UC emissions excited at 980 nm and 1550 nm, respectively. The energy transfer efficiency from Er3+ to Yb3+ was calculated according to the fluorescence lifetime measurement under 1550 nm excitation. Temperature sensing based upon the thermally coupled energy levels 2H11/2/4S3/2 as well as thermally coupled Stark sublevels of 4F9/2 level of Er3+ was investigated under the excitation of 980 nm. The maximum absolute sensitivities were respectively obtained to be 0.42% K-1 at 573 K and 0.18% K-1 at 298 K. Our results indicated that BaGd2O4: Yb3+/Er3+ phosphors might be a kind of promising red UC phosphors with optical temperature measurement function.

8.
Dalton Trans ; 51(39): 14894-14905, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36102880

RESUMO

Currently, the efficient way to synthesize white light-emitting diodes (WLEDs) is combining a near-ultraviolet (n-UV, 380-420 nm) emitting LED chip with tricolor (red, green, and blue) emitting phosphors. However, further improving the color rendering index (CRI) for WLEDs is hindered by the absence of cyan components. Hence, a series of high-efficiency and continuously tunable Ce3+,Gd3+-doped CaScBO4 (CSBO) blue-cyan phosphors with an orthorhombic structure were successfully developed by a high-temperature solid-state reaction method. Based on density-functional theory (DFT) calculation, a vacancy was produced along with inequivalent replacement (3Ca2+ → 2Ce3+/Gd3+ + V''Ca) when just adding the trivalent cations, meanwhile causing the local environment of the lattice to relax so Ce3+/Gd3+ ions find it easier to enter into Sc3+ sites at a higher doping concentration. Under the excitation of n-UV, the emission peak position moves from 443 nm to 480 nm and two concentration quenching points appear with an increase in Ce3+ ions by defect-induced site-selective occupation. The two samples at concentration quenching points both have high quantum efficiencies of 88.6% and 86.2% and an acceptable thermal quenching performance. The property performance and internal mechanism are illuminated by the excitation and emission spectra and theoretical analysis. Finally, by combining CSBO:Ce3+, commercial green and red phosphors and an n-UV LED chip, an as-fabricated WLED with a great CRI value of 93.2 and a low CCT (4291K) was obtained. This work demonstrates the potential of CSBO:Ce3+ as a blue-cyan phosphor for use in high-quality full-visible-spectrum WLEDs in the future. The investigation of the mechanism for the defect-induced site preferences provides a reference for developing new photoluminescent materials.

9.
Dalton Trans ; 51(32): 12352-12361, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35904086

RESUMO

A series of Er3+/Yb3+ co-doped Cs3BiSr(P2O7)2 (CBSPO) phosphors with significant thermal enhancement were successfully prepared using the solid-state method and the thermal-enhancing effect was studied in detail. When the temperature increased from 303 to 723 K, the upconversion luminescence (UCL) emission intensities of 2H11/2 → 4I15/2 and 2H11/2 + 4S3/2 → 4I15/2 of Er3+ in CBSPO:0.1Er3+/0.2Yb3+ were enhanced 22.81 and 10.06 times under 980 nm laser excitation, respectively. Meanwhile, the UCL color of the sample obviously changed from orange to green with the increase in temperature. Furthermore, the UCL thermal enhancement mechanism was demonstrated, which originates from phonon-assisted transitions. In addition, the maximum absolute temperature sensitivity for CBSPO:0.1Er3+/0.2Yb3+ was calculated to be 0.01026 K-1 at 563 K via luminescence intensity ratio (LIR) technology. All the results show that the CBSPO:Er3+/Yb3+ phosphors can be used for safety warning and temperature measurement at high temperatures.

10.
Materials (Basel) ; 15(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35329587

RESUMO

Broadband tunable solid-state lasers continue to present challenges to scientists today. The gain medium is significant for realizing broadband tunable solid-state lasers. In this investigation, the optical gain performance for Tm3+ and Cu+ single-doped and co-doped germanate glasses with broadband emissions was studied via an amplified spontaneous emission (ASE) technique. It was found that the net optical gain coefficients (NOGCs) of Tm3+ single-doped glass were larger than those for Cu+ single-doped glass. When Tm3+ was introduced, the emission broadband width of Cu+-doped glass was effectively extended. Moreover, it was found that for the co-doped glass the NOGCs at the wavelengths for Tm3+ and Cu+ emissions were larger than those of Tm3+ and Cu+ single-doped glasses at the same wavelengths. In addition, the NOGC values of Tm3+ and Cu+ co-doped germanate glasses were of the same order of magnitude, and were maintained in a stable range at different wavelengths. These results indicate that the Tm3+ and Cu+ co-doped glasses studied may be a good candidate medium for broadband tunable solid-state lasers.

11.
Nanomaterials (Basel) ; 11(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922619

RESUMO

L10 ordered FePt and FePtCu nanoparticles (NPs) with a good dispersion were successfully fabricated by a simple, green, one-step solid-phase reduction method. Fe (acac)3, Pt (acac)2, and CuO as the precursors were dispersed in NaCl and annealed at different temperatures with an H2-containing atmosphere. As the annealing temperature increased, the chemical order parameter (S), average particle size (D), coercivity (Hc), and saturation magnetization (Ms) of FePt and FePtCu NPs increased and the size distribution range of the particles became wider. The ordered degree, D, Hc, and Ms of FePt NPs were greatly improved by adding 5% Cu. The highest S, D, Hc, and Ms were obtained when FePtCu NPs annealed at 750 °C, which were 0.91, 4.87 nm, 12,200 Oe, and 23.38 emu/g, respectively. The structure and magnetic properties of FePt and FePtCu NPs at different annealing temperatures were investigated and the formation mechanism of FePt and FePtCu NPs were discussed in detail.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 244: 118846, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-32862076

RESUMO

LaNbO4: Nd3+/Yb3+/Ho3+ phosphor was prepared by a conventional high temperature solid-state reaction method. The temperature dependence of up-conversion (UC) luminescence property of LaNbO4: Nd3+/Yb3+/Ho3+ phosphor under 808 nm excitation and the potential application of exploiting the red-to-green UC emission intensity ratio (IR/IG) of Ho3+ in temperature sensing were studied. Two-photon processes were confirmed to be responsible for both the green and the red UC emissions at different temperatures by analyzing the excitation power density dependent UC luminescence spectra measured at different temperatures. The energy level diagram was drawn to analyze the UC luminescence mechanism of Ho3+. In addition, it was found that the ratio IR/IG of Ho3+ was independent of the excitation power density of 808 nm laser under the current experimental condition, but it was sensitive to the temperature. And the temperature dependent UC luminescence spectra displayed that the ratio IR/IG exhibited a good linear increasing tendency with temperature rising. The obtained temperature sensing sensitivity was 2.04 × 10-3 K-1 in the temperature range of 303-693 K. The results suggest that LaNbO4: Nd3+/Yb3+/Ho3+ phosphor may be a good candidate for application in optical temperature sensors.

13.
Phys Chem Chem Phys ; 22(43): 25177-25183, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33124640

RESUMO

Usually, the optical transition properties of trivalent rare earth (RE) ions in transparent hosts can be quantitatively investigated in the framework of Judd-Ofelt theory. A standard and commonly accepted calculation procedure based on the absorption spectrum has already been established. However, it is hard to assess the optical transition properties of trivalent RE ions doped in powdered and film materials owing to the difficulty in the absolute absorption spectrum measurements. In this work, we proposed a new route to calculate the Judd-Ofelt parameters of trivalent RE ion-doped materials in any morphological and shaped forms. In this method, the fluorescence decay values bridging the radiative transition rates and the Judd-Ofelt parameters were used. As an application example of the proposed Judd-Ofelt calculation method, the Judd-Ofelt parameters of Er3+ in NaYF4 were calculated via the proposed route, and it was found that the obtained results are in reasonable accordance with those derived from other routes. It was also proved that this proposed Judd-Ofelt calculation method is a practicable and effective route for evaluating optical transition properties of trivalent RE ions in non-transparent hosts as long as the fluorescence decay values can be measured.

14.
Phys Chem Chem Phys ; 22(15): 7844-7852, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32227059

RESUMO

The optical transition properties of trivalent rare earth (RE3+) doped luminescent materials have received extensive attention. The Judd-Ofelt theory is an effective tool for exploring the optical transition properties for the 4f-4f transitions of lanthanides. The aim of this work is to discover the effect of Er3+ concentration and different Ln3+ ions on the Judd-Ofelt parameters in LnOCl:Er3+ (Ln = Y, La, Gd) phosphors. Oxychloride LnOCl:Er3+ (Ln = Y, La, Gd) phosphors were produced via a single displacement reaction technique. The Judd-Ofelt calculation procedure for RE3+ doped powders was modified and then adopted to obtain the Judd-Ofelt parameters of Er3+ in the studied phosphors. Meanwhile, a new route for examining the Judd-Ofelt calculation quality was proposed and used. It was found that the Er3+ doping concentration slightly affects the optical transition properties of Er3+ in YOCl and LaOCl, but greatly affects the optical transition properties in GdOCl. Moreover, it was also found that the optical transition properties of Er3+ depend also on Ln3+ (Ln = Y, La, Gd) though the crystal structure of these compounds is similar. The Judd-Ofelt parameters of Er3+ are the smallest in LaOCl:Er3+, medium in YOCl:Er3+, but the biggest in GdOCl:Er3+ when the doping concentration is the same.

15.
Ultramicroscopy ; 212: 112980, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32213378

RESUMO

Probing the dynamic magnetic domain of permanent magnet materials under an external AC magnetic field using magnetic force microscopy is challenging as well as important to reveal their pinning sites and local magnetization processes. In this work, we develop alternating magnetic force microscopy (A-MFM) with a Co-GdOx superparamagnetic tip for observing the dynamic magnetic domain wall (DW) motion in a, b plane Nd-Fe-B sintered magnets by stimulating the magnetization of the superparamagnetic tip and Nd-Fe-B sample using an external AC magnetic field. This method enables the simultaneous measurement of DC and AC magnetic fields from the sample surface. The measurement results reveal that the DW motion does not happen until the amplitude of the external AC magnetic field reached 77 Oe0-p (zero to peak). Further increasing the external AC magnetic field strength leads to DW motion with larger movement area and stronger AC magnetic field originating from the DW motion. In addition, A-MFM images shows the pinning sites of the DW motion. The present work provides a direct and effective approach to studying the local dynamic magnetization processes of the magnetic materials on the nanometer scale.

16.
Nanotechnology ; 29(30): 305502, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-29722293

RESUMO

For magnetic domain imaging, with a very high spatial resolution magnetic force microscope, the tip-sample distance should be as small as possible. However, magnetic imaging near the sample surface is very difficult with conventional magnetic force microscopy (MFM) because the interactive forces between the tip and sample include van der Waals and electrostatic forces along with a magnetic force. In this study, we proposed alternating MFM which only extracts a magnetic force near the sample surface without any topographic and electrical crosstalk. In the present method, the magnetization of an FeCo-GdO x superparamagnetic tip is modulated by an external AC magnetic field in order to measure the magnetic domain structure without any perturbation from the other forces near the sample surface. Moreover, it is demonstrated that the proposed method can also measure the strength and identify the polarities of the second derivative of the perpendicular stray field from a thin film permanent magnet with a DC demagnetized state and remanent state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA