Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Anal Chem ; 95(36): 13401-13406, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37565811

RESUMO

Assays for the molecular detection of miRNAs are typically constrained by the level of multiplexing, especially in a single tube. Here, we report a general and programmable diagnostic platform by combining mesophilic Clostridium perfringens Argonaute (CpAgo) with exponential isothermal amplification (EXPAR), which is a dual-signal amplification strategy, allowing for the rapid and sensitive detection of multiple miRNAs with single-nucleotide discrimination in one pot. The CpAgo-based One-Pot (COP) assay achieved a limit of detection of 1 zM miRNA within 30 min of turnaround time and a wide concentration range. This COP assay was applied to simultaneously detect four miRNAs in a single tube from clinical serum samples, showing superior analytical performance in distinguishing colorectal cancer patients from healthy individuals. This programmable, one-pot, multiplex, rapid, and specific strategy offers great promise in scientific research and clinical applications.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , Clostridium perfringens/genética , Nucleotídeos , Técnicas de Amplificação de Ácido Nucleico
3.
Nat Biotechnol ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386294

RESUMO

As the evolutionary ancestor of Cas12 nuclease, the transposon (IS200/IS605)-encoded TnpB proteins act as compact RNA-guided DNA endonucleases. To explore their evolutionary diversity and potential as genome editors, we screened TnpBs from 64 annotated IS605 members and identified 25 active in Escherichia coli, of which three are active in human cells. Further characterization of these 25 TnpBs enables prediction of the transposon-associated motif (TAM) and the right-end element RNA (reRNA) directly from genomic sequences. We established a framework for annotating TnpB systems in prokaryotic genomes and applied it to identify 14 additional candidates. Among these, ISAam1 (369 amino acids (aa)) and ISYmu1 (382 aa) TnpBs demonstrated robust editing activity across dozens of genomic loci in human cells. Both RNA-guided genome editors demonstrated similar editing efficiency as SaCas9 (1,053 aa) while being substantially smaller. The enormous diversity of TnpBs holds potential for the discovery of additional valuable genome editors.

4.
Life Sci Alliance ; 6(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36414375

RESUMO

Sry on the Y chromosome is the master switch of sex determination in mammals. It has been well established that Sry encodes a transcription factor that is transiently expressed in somatic cells of the male gonad, leading to the formation of testes. In the testis of adult mice, Sry is expressed as a circular RNA (circRNA) transcript. However, the physiological function of Sry circRNA (circSRY) remains unknown since its discovery in 1993. Here we show that circSRY is mainly expressed in the spermatocytes, but not in mature sperm or somatic cells of the testis. Loss of circSRY led to germ cell apoptosis and the reduction of sperm count in the epididymis. The level of γH2AX was decreased, and failure of XY body formation was noted in circSRY KO germ cells. Further study demonstrated that circSRY directly bound to miR-138-5p in spermatocytes, and in vitro assay suggested that circSRY regulates H2AX mRNA through sponging miR-138-5p. Our study demonstrates that, besides determining sex, Sry also plays an important role in spermatogenesis as a circRNA.


Assuntos
MicroRNAs , RNA Circular , Masculino , Camundongos , Animais , Proteína da Região Y Determinante do Sexo/genética , RNA Circular/genética , Sêmen , Espermatogênese/genética , Células Germinativas , MicroRNAs/genética , Mamíferos/genética
5.
Cancer Cell ; 40(11): 1407-1422.e7, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36240777

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has limited efficacy against solid tumors, and one major challenge is T cell exhaustion. To address this challenge, we performed a candidate gene screen using a hypofunction CAR-T cell model and found that depletion of basic leucine zipper ATF-like transcription factor (BATF) improved the antitumor performance of CAR-T cells. In different types of CAR-T cells and mouse OT-1 cells, loss of BATF endows T cells with improved resistance to exhaustion and superior tumor eradication efficacy. Mechanistically, we found that BATF binds to and up-regulates a subset of exhaustion-related genes in human CAR-T cells. BATF regulates the expression of genes involved in development of effector and memory T cells, and knocking out BATF shifts the population toward a more central memory subset. We demonstrate that BATF is a key factor limiting CAR-T cell function and that its depletion enhances the antitumor activity of CAR-T cells against solid tumors.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Neoplasias , Humanos , Camundongos , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/genética , Neoplasias/genética , Neoplasias/terapia , Imunoterapia Adotiva
6.
J Am Chem Soc ; 144(14): 6575-6582, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35357193

RESUMO

DNA nanotechnology has been widely employed in the construction of various functional nanostructures. However, most DNA nanostructures rely on hybridization between multiple single-stranded DNAs. Herein, we report a general strategy for the construction of a double-stranded DNA-ribonucleoprotein (RNP) hybrid nanostructure by folding double-stranded DNA with a covalently bivalent clustered regularly interspaced short palindromic repeats (CRISPR)/nuclease-dead CRISPR-associated protein (dCas) system. In our design, dCas9 and dCas12a can be efficiently fused together through a flexible and stimuli-responsive peptide linker. After activation by guide RNAs, the covalently bivalent dCas9-12a RNPs (staples) can precisely recognize their target sequences in the double-stranded DNA scaffold and pull them together to construct a series of double-stranded DNA-RNP hybrid nanostructures. The genetically encoded hybrid nanostructure can protect genetic information in the folded state, similar to the natural DNA-protein hybrids present in chromosomes, and elicit efficient stimuli-responsive gene transcription in the unfolded form. This rationally developed double-stranded DNA folding and unfolding strategy presents a new avenue for the development of DNA nanotechnology.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Nanoestruturas , Sistemas CRISPR-Cas , DNA/genética , DNA/metabolismo , Edição de Genes , Ribonucleoproteínas
7.
ACS Appl Mater Interfaces ; 12(29): 32461-32467, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32613824

RESUMO

DNA nanostructures have garnered considerable interest as research tools in the field of cell biology and pathology. Herein, we develop an addressable double-bundle DNA tetrahedron with distinct modification sites to load multiple functional components for efficient regulation of gene expression. In our tailored nanoplatform, nucleic acid drugs (antisense for gene therapy) and protein drugs (KillerRed for photodynamic therapy) are precisely organized in the chemically well-defined DNA tetrahedron. With the attachment of active targeting groups, this functional DNA nanocarrier can efficiently penetrate into the cell membrane and subsequently transport drugs to the target subcellular organelles (mitochondrion and nucleus) for inducing synergistic cell behavior regulation to start the endogenous apoptotic process. This tailored DNA nanocarrier provides unprecedented opportunities for intelligent drug delivery and cell biology research.


Assuntos
DNA/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Terapia Genética , Humanos , Nanoestruturas/química , Tamanho da Partícula , Fotoquimioterapia , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA