RESUMO
Nanoparticle sintering has long been a major challenge in developing catalytic systems for use at elevated temperatures. Here we report an in situ electron microscopy study of the extraordinary sinter resistance of a catalytic system comprised of sub-2 nm Pt nanoparticles on a Se-decorated carbon support. When heated to 700 °C, the average size of the Pt nanoparticles only increased from 1.6 to 2.2 nm, while the crystal structure, together with the {111} and {100} facets, of the Pt nanoparticles was well retained. Our electron microscopy analyses suggested that the superior resistance against sintering originated from the Pt-Se interaction. Confirmed by energy-dispersive X-ray elemental mapping and electron energy loss spectra, the Se atoms surrounding the Pt nanoparticles could survive the heating. This work not only offers an understanding of the physics behind the thermal behavior of this catalytic material but also sheds light on the future development of sinter-resistant catalytic systems.
RESUMO
Ligand exchange is fundamentally related to the surface chemistry of nanoparticles in solution and is also an essential procedure for their synthesis and solution processing. The solution of ligand-bearing nanoparticles can be regarded as a dynamic equilibrium of bound and free ligands depending on the concentration and temperature. The direct experimental calibration of the ligand exchange dynamics relies on the in situ and real-time quantification of bound and free ligands. However, existing analytical strategies are often with limited applicability considering the requirement of special functional groups or the indirect detection of photoluminescence or reaction heat. In this work, we explore diffusion-based methods of solution-state nuclear magnetic resonance (NMR) as a general strategy to probe ligand exchange. Using comprehensive numerical simulations, we show that diffusion NMR with designable time sequences can effectively distinguish bound and free ligands and measure the exchange rate constants from 0.5 to 200 s-1 under typical instrumental settings. These methods are demonstrated experimentally on colloidal CdSe nanocrystal systems with carboxylate or amine ligands whose exchange rates were previously undetectable. The kinetic rate constants, activation energies, and thermodynamic parameters of ligand exchange have been obtained under variable temperature conditions. We expect the diffusion NMR strategies to be generally applicable for calibrating the exchange of organic ligands on various nanoparticle systems.
Assuntos
Nanopartículas , Ligantes , Nanopartículas/química , Espectroscopia de Ressonância Magnética , Termodinâmica , TemperaturaRESUMO
Implementing fast-charging lithium-ion batteries (LIBs) is severely hindered by the issues of Li plating and poor rate capability for conventional graphite anode. Wadsley-Roth phase TiNb2 O7 is regarded as a promising anode candidate to satisfy the requirements of fast-charging LIBs. However, the unsatisfactory electrochemical kinetics resulting from sluggish ion and electron transfer still limit its wide applications. Herein, an effective strategy is proposed to synchronously improve the ion and electron transfer of TiNb2 O7 by incorporation of oxygen vacancy and N-doped graphene matrix (TNO- x @N-G), which is designed by combination of solution-combustion and electrostatic self-assembly approach. Theoretical calculations demonstrate that Li+ intercalation gives rise to the semi-metallic characteristics of lithiated phases (Liy TNO- x ), leading to the self-accelerated electron transport. Moreover, in situ X-ray diffraction and Raman measurements reveal the highly reversible structural evolution of the TNO- x @N-G during cycling. Consequently, the TNO- x @N-G delivers a higher reversible capacity of 199.0 mAh g-1 and a higher capacity retention of 86.5% than those of pristine TNO (155.8 mAh g-1 , 59.4%) at 10 C after 2000 cycles. Importantly, various electrochemical devices including lithium-ion full battery and hybrid lithium-ion capacitor by using the TNO- x @N-G anode exhibit excellent rate capability and cycling stability, verifying its potential in practical applications.
RESUMO
Despite extensive efforts devoted to the synthesis of Pt-Co bimetallic nanocrystals for fuel cell and related applications, it remains a challenge to simultaneously control atomic arrangements in the bulk and on the surface. Here we report a synthesis of Pt-Co@Pt octahedral nanocrystals that feature an intermetallic, face-centered tetragonal Pt-Co core and an ultrathin Pt shell, together with the dominance of {111} facets on the surface. When evaluated as a catalyst toward the oxygen reduction reaction (ORR), the nanocrystals delivered a mass activity of 2.82 A mg-1 and a specific activity of 9.16 mA cm-2, which were enhanced by 13.4 and 29.5 times, respectively, relative to the values of a commercial Pt/C catalyst. More significantly, the mass activity of the nanocrystals only dropped 21% after undergoing 30â¯000 cycles of accelerated durability test, promising an outstanding catalyst with optimal performance for ORR and related reactions.
RESUMO
Porcine circovirus type 2 (PCV2) is a major pathogen associated with swine diseases. It is the smallest single-stranded DNA virus, and its genome contains four major open reading frames (ORFs). ORF2 encodes the major structural protein Cap, which can self-assemble into virus-like particles (VLPs) in vitro and contains the primary antigenic determinants. In this study, we developed a high-efficiency method for obtaining VLPs and optimized the purification conditions. In this method, we expressed the protein Cap with a 6× His tag using baculovirus-infected silkworm larvae as well as the E. coli BL21(DE3) prokaryotic expression system. The PCV2 Cap proteins produced by the silkworm larvae and E. coli BL21(DE3) were purified. Cap proteins purified from silkworm larvae self-assembled into VLPs in vitro, while the Cap proteins purified from bacteria were unable to self-assemble. Transmission electron microscopy confirmed the self-assembly of VLPs. The immunogenicity of the VLPs produced using the baculovirus system was demonstrated using an enzyme-linked immunosorbent assay (ELISA). Furthermore, the purification process was optimized. The results demonstrated that the expression system using baculovirus-infected silkworm larvae is a good choice for obtaining VLPs of PCV2 and has potential for the development of a low-cost and efficient vaccine.
Assuntos
Anticorpos Antivirais/biossíntese , Baculoviridae/genética , Bombyx/virologia , Proteínas do Capsídeo/imunologia , Circovirus/imunologia , Vacinas de Partículas Semelhantes a Vírus/biossíntese , Vacinas Virais/biossíntese , Animais , Antígenos Virais/química , Antígenos Virais/imunologia , Baculoviridae/imunologia , Proteínas do Capsídeo/biossíntese , Proteínas do Capsídeo/genética , Infecções por Circoviridae/imunologia , Infecções por Circoviridae/prevenção & controle , Infecções por Circoviridae/virologia , Circovirus/genética , Epitopos/química , Epitopos/imunologia , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Histidina/genética , Histidina/imunologia , Soros Imunes/química , Imunogenicidade da Vacina , Larva/virologia , Camundongos , Oligopeptídeos/genética , Oligopeptídeos/imunologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/isolamento & purificação , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/isolamento & purificaçãoRESUMO
We report a robust method for effectively removing the chemisorbed Br- ions, a capping agent, from the surface of Pd nanocubes to maximize their catalytic activity. The Br- ions can be removed by simply heating the sample in water, but the desorption of Br- ions will expose the underneath Pd atoms to the O2 from air for the formation of a relatively thick oxide layer. During potential cycling, the oxide layer evolves into detrimental features such as steps and terraces. By introducing a trace amount of hydrazine into the system, the Br- ions can be removed by heating without forming a thick oxide layer. The as-cleaned nanocubes show greatly enhanced activity toward formic acid oxidation. This cleaning method can also remove Br- ions from Rh nanocubes and it is expected to work for other combinations of nanocrystals and capping agents.
RESUMO
Platinum (Pt)-based catalysts have shown excellent catalytic performance in many fields, particularly for the oxygen reduction reaction (ORR) and direct oxidation of small fuel molecules. Further development of Pt-based electrocatalysts relies on the morphology design of Pt-based alloy nanocrystals (NCs) with highly accessible and active surface sites to optimize Pt atomic utilization. In this work, we reported PtCo-excavated rhombic dodecahedral (ERD) NCs consisting of the self-assembly of 24 ultrathin nanosheets synthesized by a simple wet chemical method. The morphology can be regulated from convex to excavated polyhedra by controlling the amount of formaldehyde and the molar ratio of the Co/Pt precursor. The as-prepared PtCo ERD NCs/C catalyst exhibits excellent ORR performance, which has about 12 times higher specific activity and 6 times higher mass activity than the commercial Pt/C catalyst. It also displays good electrocatalytic ability towards methanol oxidation, in which the specific activity and mass activity are about 6 times higher and 2 times higher than the commercial Pt/C, respectively. Their enhanced activity is attributed to the excavated structure and alloy feature.
RESUMO
Type III interferon (IFN-λ) has recently been shown to exert a significant antiviral impact against viruses in vertebrates. Avian leukosis virus subgroup J (ALV-J), which causes tumor disease and immunosuppression in infected chicken, is a retrovirus that is difficult to prevent and control because of a lack of vaccines and drugs. Here, we obtained chicken IFN-λ (chIFN-λ) using a silkworm bioreactor and demonstrated that chIFN-λ has antiviral activity against ALV-J infection of both chicken embryo fibroblast cell line (DF1) and epithelial cell line (LMH). We found that chIFN-λ triggered higher levels of particular type III interferon-stimulated genes (type III ISGs) including myxovirus resistance protein (Mx), viperin (RSAD2), and interferon-inducible transmembrane protein 3 (IFITM3) in DF1 and LMH cells. Furthermore, over-expression of Mx, viperin, and IFITM3 could inhibit ALV-J infection in DF1 and LMH cells. Therefore, these results suggested that the anti-ALV-J function of chIFN-λ was specifically implemented by induction of expression of type III ISGs. Our data identified chIFN-λ as a critical antiviral agent of ALV-J infection and provides a potentially and attractive platform for the production of commercial chIFN-λ.
Assuntos
Antivirais/metabolismo , Vírus da Leucose Aviária/crescimento & desenvolvimento , Galinhas , Interferons/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Reatores Biológicos , Bombyx , Células Epiteliais/virologia , Fibroblastos/virologia , Expressão Gênica , Interferons/genética , Proteínas Recombinantes/genética , Interferon lambdaRESUMO
Carbon-supported Pt nanoparticles are used as catalysts for a variety of reactions including the oxygen reduction reaction (ORR) key to proton-exchange membrane fuel cells, but their catalytic performance has long been plagued by detachment and sintering. Here we report the in situ growth of sub-2 nm Pt particles on a commercial carbon support via the galvanic reaction between a Pt(II) precursor and a uniform film of amorphous Se predeposited on the support. The residual Se could serve as a linker to strongly anchor the Pt nanoparticles to the carbon surface, leading to a catalytic system with extraordinary activity and durability toward ORR. Even after 20â¯000 cycles of accelerated durability test, the sub-2 nm Pt particles were still dispersed well on the carbon support and maintained a mass activity more than three-times as high as the pristine value of a commercial Pt/C catalyst.
RESUMO
Gold (Au) typically crystallizes in a cubic close-packed ( ccp) structure to present a face-centered cubic ( fcc) lattice or crystal phase. Herein, we demonstrate that Au nanoscale hexagonal stars featuring a hexagonal close-packed ( hcp) structure can be synthesized in an aqueous system in the presence of fcc-Au nanospheres as the seeds. The success of this synthesis critically relies on the use of ethylenediaminetetraacetic acid to complex with Au3+ ions (the precursor) and the introduction of 2-phospho-l-ascorbic acid trisodium salt (Asc-2P) as a novel reducing agent to maneuver the reduction kinetics. The use of Asc-2P favorably promotes the formation of hexagonal stars with uneven surfaces at the top and bottom faces, together with concave side faces around the edges. By varying the amount of Asc-2P to fine-tune the reduction kinetics, we can adjust the concaveness of the side faces, with a faster reduction rate favoring greater concaveness and a red shift of the plasmon resonance peak to the near-infrared. For the first time, our results suggest that the phosphate and hydroxyl groups can act synergistically in controlling the morphology of Au nanocrystals. Most significantly, the newly deposited Au atoms can also crystallize in an hcp structure, leading to the observation of a phase transition from fcc to hcp along the growth direction. This new protocol based upon kinetic control can be potentially extended to other noble metals for the facile synthesis of nanocrystals featuring unprecedented structures or phases.
RESUMO
Bombyx mori Nucleopolyhedrovirus (BmNPV), which is a member of the Baculoviridae family, is a significant pathogen of the silkworm. The infection of BmNPV is often lethal and causes about 20% loss of cocoon in the silk industry annually. To explore the effects of different gene inhibition strategies on the replication cycle of baculovirus, we constructed the mutant virus to infect BmN cells directly and further identified ie0, ie1, and gp64 as the essential viral genes of BmNPV. To elucidate the significance of the inhibition effect of different interference strategies, we characterized and constructed the recombinant BmNPV that carried a single or multigene-interfering cassette. The results showed that the inhibition effect of dsie1 on target gene expression, virus titer, and silkworm mortality was significantly better than that of dsie0 and dsgp64. It also showed that the dsie1 interference produced fewer progeny virions and was less lethal, which indicates that ie1 played a more critical role in the BmNPV replication cycle. Furthermore, the inhibitory effect of the virus titer and mortality indicated that the multigene co-interference constructed by the baculovirus expression system was significantly better than the interference of any single-gene (p < 0.05). In summary, the strategy of multigene synergy can achieve the function of continuous interference and provide a new platform for the breeding of silkworm disease resistant. In addition, this strategy improves the various traits of the silkworm.
Assuntos
Bombyx/virologia , Genes Essenciais , Mutação , Nucleopoliedrovírus/patogenicidade , Actinas/genética , Animais , Bombyx/genética , Regulação Viral da Expressão Gênica , Mortalidade , Família Multigênica , Nucleopoliedrovírus/genética , Interferência de RNA , Carga Viral , Proteínas Virais/genética , Replicação ViralRESUMO
Developing active and durable electro-catalysts toward ethanol oxidation reaction (EOR) with high selectivity toward the C-C bond cleavage is an important issue for the commercialization of direct ethanol fuel cell. Unfortunately, current ethanol oxidation electro-catalysts (e.g., Pt, Pd) still suffer from poor selectivity for direct oxidation of ethanol to CO2, and rapid activity degradation. Here we report a facile route to the synthesis of a new kind of cyclic penta-twinned (CPT) Rh nanostructures that are self-supported nanobranches (NBs) built with 1-dimension CPT nanorods as subunits. Structurally, the as-prepared Rh NBs possess high percentage of open {100} facets with significant CPT-induced lattice strains. With these unique structural characteristics, the as-prepared CPT Rh NBs exhibit outstanding electrocatalytic performance toward EOR in alkaline solution. Most strikingly, the selectivity of complete conversion ethanol to CO2 on the CPT Rh NBs is measured to be as high as 14.5 ± 1.1% at -0.15 V, far exceeding that for single-crystal tetrahedral nanocrystals, icosahedral nanocrystals, and commercial Rh black, as well as majority of reported values for Pt or Pd-based electro-catalysts. By combining with density functional theory calculation, the effects of different structural features of Rh on EOR are definitively elucidated. It was found that the large amount of open Rh (100) facets dominantly contribute to the outstanding activity and exceptionally high selectivity, while the additional tensile strain on (100) planes can further boost the catalytic activity by enhancing the adsorption strength and lowering the reaction barrier of dehydrogenation process of ethanol. As a proof of concept, the present work shows that rationally optimizing surface and electronic structure of electro-catalysts by simultaneously engineering their surface and bulk structures is a promising strategy to promote the performance of electro-catalysts.
RESUMO
Catalyst sintering, a main cause of the loss of catalytic activity and/or selectivity at high reaction temperatures, is a major concern and grand challenge in the general area of heterogeneous catalysis. Although all heterogeneous catalysts are inevitably subjected to sintering during their operation, the immediate and drastic consequences can be mitigated by carefully engineering the catalytic particles and their interactions with the supports. In this tutorial review, we highlight recent progress in understanding the physical chemistry and materials science involved in sintering, including the discussion of advanced techniques, such as in situ microscopy and spectroscopy, for investigating the sintering process and its rate. We also discuss strategies for the design and rational fabrication of sinter-resistant catalysts. Finally, we showcase recent success in improving the thermal stability and thus sinter resistance of supported catalytic systems.
RESUMO
Single crystalline noble metal nanocages are the most promising candidates for heterogeneous catalysis due to their large specific surface area, well-defined structure and enhanced structural stability. Herein, based on the observation of an unexpected phenomenon that the alloying of Pt and transition metals by co-reduction is more preferential than the formation of pure Pt NCs, we propose a feasible one-pot strategy to synthesize a uniformly epitaxial core-shell Pt-Ni structure with a Ni-rich alloy as the core and a Pt-rich alloy as the shell. The as-prepared Pt-Ni core-shell structures are subsequently etched into monocrystalline Pt-Ni branched nanocages with the wall thickness being 2.8 nm. This unique structure exhibits excellent catalytic performance and stability for the hydrogen evolution reaction (HER) in alkaline solution which is of great significance for the energy-intensive water-alkali and chlor-alkali industry.
RESUMO
Owing to high specific capacity of â¼250 mA h g-1, lithium-rich layered oxide cathode materials (Li1+ xNi yCo zMn(3- x-2 y-3 z)/4O2) have been considered as one of the most promising candidates for the next-generation cathode materials of lithium ion batteries. However, the commercialization of this kind of cathode materials seriously restricted by voltage decay upon cycling though Li-rich materials with high cobalt content have been widely studied and show good capacity. This research successfully suppresses voltage decay upon cycling while maintaining high specific capacity with low Co/Ni ratio in Li-rich cathode materials. Online continuous flow differential electrochemical mass spectrometry (OEMS) and in situ X-ray diffraction (XRD) techniques have been applied to investigate the structure transformation of Li-rich layered oxide materials during charge-discharge process. The results of OEMS revealed that low Co/Ni ratio lithium-rich layered oxide cathode materials released no lattice oxygen at the first charge process, which will lead to the suppression of the voltage decay upon cycling. The in situ XRD results displayed the structure transition of lithium-rich layered oxide cathode materials during the charge-discharge process. The Li1.13Ni0.275Mn0.580O2 cathode material exhibited a high initial medium discharge voltage of 3.710 and a 3.586 V medium discharge voltage with the lower voltage decay of 0.124 V after 100 cycles.
RESUMO
Due to their distinctive structure, inherently anisotropic properties and broad applications, Janus colloidal particles have attracted tremendous attention and it is significant to synthesize high yield Janus colloidal particles in a cost-effective and reliable way. On the other hand, due to the expanded electromagnetic interference problems, it is highly desired to develop excellent electromagnetic wave absorbing materials with an ultra-wide absorption bandwidth for practical application. Herein, a confined liquid-solid redox reaction strategy has been developed to fabricate a series of Fex(CoyNi1-y)100-x ternary alloy particles. The as-prepared particles are in the form of u-channelled noncentrosymmetric spheres, one kind of Janus colloidal particles which have been rarely observed. Due to the combination and synergy effects of multi-magnetic metals, the polycrystalline structure and their specific morphology, the as-prepared particles possess multiple magnetic resonance and multiple dielectric relaxation processes, and therefore show excellent electromagnetic wave absorption performances. In particular, the strongest reflection loss (RL) of the Fe15(Co0.2Ni0.8)85 Janus colloidal particles is up to -36.9 dB with a thickness of 2.5 mm, and the effective absorption (RL < -10 dB) bandwidth can reach 9.2 GHz (8-17.2 GHz) with a thickness of 2 mm. Such a wide bandwidth has barely been reported for magnetic metal alloys under a single thickness. These results suggest that the Fex(CoyNi1-y)100-x Janus particles could be a promising candidate for highly efficient electromagnetic wave absorbing materials for practical application.
RESUMO
Seed-mediated growth is the most general way to controllably synthesize bimetal nano-heterostructures. Despite successful instances through trial and error were reported, the way for second metal depositing on the seed, namely whether the symmetry of resulted nano-heterostructure follows the original crystal symmetry of seed metal, remains an unpredictable issue to date. In this work, we propose that the thermodynamic factor, i.e., the difference of equilibrium electrochemical potentials (corresponding to their Fermi levels) of two metals in the growth solution, plays a key role for the symmetry breaking of bimetal nano-heterostructures during the seed-mediated growth. As a proof-of-principle experiment, by reversing the relative position of Fermi levels of the Pd nanocube seeds and the second metal Au with changing the concentration of reductant (L-ascorbic acid) in the growth solution, the structure of as-prepared products successfully evolved from centrosymmetric Pd@Au core-shell trisoctahedra to asymmetric Pd-Au hetero-dimers. The idea was further demonstrated by the growth of Ag on the Pd seeds. The present work intends to reveal the origin of symmetry breaking in the seed-mediated growth of nano-heterostructures from the viewpoint of thermodynamics, and these new insights will in turn help to achieve rational construction of bimetal nano-heterostructures with specific functions.
RESUMO
Predictable synthesis of bimetallic nanocrystals with spatially controlled metal distributions offers a versatile route to the development of highly efficient nanocatalysts. Here we report a one-pot synthesis of super branched Rh-on-Cu nanoscale sea urchins (Rh-Cu NSUrs) with a high density of Cu-Rh interfaces by manipulating the ligand coordination chemistry. Structural analysis and UV-vis spectra reveal that ascorbic acid can serve as a Rh-selective coordination ligand in the nonaqueous synthesis to reverse the reduction potentials of Rh3+ and Cu2+ cations. The sequential reduction of Cu2+ and then Rh3+ cations, as well as the island epitaxial growth of Rh atoms on Cu cores, leads to the formation of Rh-on-Cu nanostructures mimicking sea urchin. The size of the Cu cores and the density of Rh branches can both be facilely regulated by tuning the mole ratio of Cu to Rh. The Cu-Rh NSUrs show enhanced activity and stability in catalyzing CO oxidation, as the intrinsic Cu-Rh interfaces can act as catalytic hot spots through a bifunctional mechanism. The Cu-Rh two-component system can separate the adsorption and activation of CO and O2 on the Rh and Cu surfaces, respectively, accelerating the generation of CO2 at the interfaces.
RESUMO
The Kirkendall effect has been recently used to produce hollow nanostructures by taking advantage of the different diffusion rates of species involved in the chemical transformations of nanoscale objects. Here we demonstrate a nanoscale Kirkendall cavitation process that can transform solid palladium nanocrystals into hollow palladium nanocrystals through insertion and extraction of phosphorus. The key to success in producing monometallic hollow nanocrystals is the effective extraction of phosphorus through an oxidation reaction, which promotes the outward diffusion of phosphorus from the compound nanocrystals of palladium phosphide and consequently the inward diffusion of vacancies and their coalescence into larger voids. We further demonstrate that this Kirkendall cavitation process can be repeated a number of times to gradually inflate the hollow metal nanocrystals, producing nanoshells of increased diameters and decreased thicknesses. The resulting thin palladium nanoshells exhibit enhanced catalytic activity and high durability toward formic acid oxidation.