Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Sport Sci ; 18(4): 497-503, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29529927

RESUMO

The effect of textured insoles on kinetics and kinematics of overground running was assessed. 16 male injury-free-recreational runners attended a single visit (age 23 ± 5 yrs; stature 1.78 ± 0.06 m; mass 72.6 ± 9.2 kg). Overground 15-m runs were completed in flat, canvas plimsolls both with and without textured insoles at self-selected velocity on an indoor track in an order that was balanced among participants. Average vertical loading rate and peak vertical force (Fpeak) were captured by force platforms. Video footage was digitised for sagittal plane hip, knee and ankle angles at foot strike and mid stance. Velocity, stride rate and length and contact and flight time were determined. Subjectively rated plantar sensation was recorded by visual scale. 95% confidence intervals estimated mean differences. Smallest worthwhile change in loading rate was defined as standardised reduction of 0.54 from a previous comparison of injured versus non-injured runners. Loading rate decreased (-25 to -9.3 BW s-1; 60% likely beneficial reduction) and plantar sensation was increased (46-58 mm) with the insole. Fpeak (-0.1 to 0.14 BW) and velocity (-0.02 to 0.06 m s-1) were similar. Stride length, flight and contact time were lower (-0.13 to -0.01 m; -0.02 to-0.01 s; -0.016 to -0.006 s) and stride rate was higher (0.01-0.07 steps s-1) with insoles. Textured insoles elicited an acute, meaningful decrease in vertical loading rate in short distance, overground running and were associated with subjectively increased plantar sensation. Reduced vertical loading rate could be explained by altered stride characteristics.


Assuntos
Órtoses do Pé , Pé/fisiologia , Marcha , Corrida , Sensação , Adulto , Fenômenos Biomecânicos , Humanos , Masculino , Adulto Jovem
2.
J Hum Kinet ; 50: 167-177, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28149354

RESUMO

This study aimed to determine the effects of a short-term, strength training intervention, typically undertaken by club-standard rowers, on 2,000 m rowing performance and strength and power development. Twenty-eight male rowers were randomly assigned to intervention or control groups. All participants performed baseline testing involving assessments of muscle soreness, creatine kinase activity (CK), maximal voluntary contraction (leg-extensors) (MVC), static-squat jumps (SSJ), counter-movement jumps (CMJ), maximal rowing power strokes (PS) and a 2,000 m rowing ergometer time-trial (2,000 m) with accompanying respiratory-exchange and electromyography (EMG) analysis. Intervention group participants subsequently performed three identical strength training (ST) sessions, in the space of five days, repeating all assessments 24 h following the final ST. The control group completed the same testing procedure but with no ST. Following ST, the intervention group experienced significant elevations in soreness and CK activity, and decrements in MVC, SSJ, CMJ and PS (p < 0.01). However, 2,000 m rowing performance, pacing strategy and gas exchange were unchanged across trials in either condition. Following ST, significant increases occurred for EMG (p < 0.05), and there were non-significant trends for decreased blood lactate and anaerobic energy liberation (p = 0.063 - 0.086). In summary, club-standard rowers, following an intensive period of strength training, maintained their 2,000 m rowing performance despite suffering symptoms of muscle damage and disruption to muscle function. This disruption likely reflected the presence of acute residual fatigue, potentially in type II muscle fibres as strength and power development were affected.

3.
Eur J Sport Sci ; 14(6): 556-62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24410623

RESUMO

Vertical and leg stiffness are related to running speed. In endurance running, the ability to maintain stiffness might be more important than the absolute stiffness magnitude. The purpose of this study was to examine changes in vertical and leg stiffness during an exhaustive. Six sub-elite runners (24.2, s = 4.2 years; 1.81, s = 0.03 m; 73.4, s = 4.4 kg) participated in this study. They performed preliminary tests to determine lactate threshold, lactate turnpoint, [Formula: see text]O2max, s[Formula: see text]O2max and a series of isokinetic endurance tests. During the run to exhaustion runners were videoed (50 Hz) to determine contact and flight times, from which leg (Kleg) and vertical (Kvert) stiffness were calculated. During the run Kleg showed a significant decrease [P = 0.030, effect size statistics (ES) = 0.74], however, the decrease in Kvert was non-significant and of a small magnitude (P = 0.051, ES = 0.32). The distance covered during the run was correlated with ΔKleg (r = -0.868) but not ΔKvert (r = 0.684). ΔKleg was very strongly related to Δ ground contact time (r = -0.937) and Δ step length (r = -0.957). The Δ ground contact time had a near perfect relationship with Δ step length (r = 0.995). Isokinetic measures were not significantly correlated with either ΔKleg. The ability to maintain a short ground contact time appears to be a key determinant of maintaining performance during a run to exhaustion. Minimising this is important for maintaining Kleg. Kleg was not significantly related to isokinetic measures.


Assuntos
Elasticidade/fisiologia , Fadiga , Perna (Membro)/fisiologia , Corrida/fisiologia , Atletas , Fenômenos Biomecânicos , Marcha , Humanos , Consumo de Oxigênio , Resistência Física/fisiologia
4.
J Sports Sci ; 30(12): 1275-83, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22857152

RESUMO

The aims of this study were to examine ground contact characteristics, their relationship with race performance, and the time course of any changes in ground contact time during competitive 800 m and 1500 m races. Twenty-two seeded, single-sex middle-distance races totalling 181 runners were filmed at a competitive athletics meeting. Races were filmed at 100 Hz. Ground contact time was recorded one step for each athlete, on each lap of their race. Forefoot and midfoot strikers had significantly shorter ground contact times than heel strikers. Forefoot and midfoot strikers had significantly faster average race speed than heel strikers. There were strong large correlations between ground contact time and average race speed for the women's events and men's 1500 m (r = -0.521 to -0.623; P < 0.05), whereas the men's 800 m displayed only a moderate relationship (r = -0.361; P = 0.002). For each event, ground contact time for the first lap was significantly shorter than for the last lap, which might reflect runners becoming fatigued.


Assuntos
Desempenho Atlético , , Resistência Física , Corrida , Análise e Desempenho de Tarefas , Fenômenos Biomecânicos , Fadiga , Feminino , Antepé Humano , Humanos , Masculino , Fatores Sexuais
5.
Biol Lett ; 7(2): 221-4, 2011 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20826469

RESUMO

Male movements serve as courtship signals in many animal species, and may honestly reflect the genotypic and/or phenotypic quality of the individual. Attractive human dance moves, particularly those of males, have been reported to show associations with measures of physical strength, prenatal androgenization and symmetry. Here we use advanced three-dimensional motion-capture technology to identify possible biomechanical differences between women's perceptions of 'good' and 'bad' male dancers. Nineteen males were recorded using the 'Vicon' motion-capture system while dancing to a basic rhythm; controlled stimuli in the form of avatars were then created in the form of 15 s video clips, and rated by 39 females for dance quality. Initial analyses showed that 11 movement variables were significantly positively correlated with perceived dance quality. Linear regression subsequently revealed that three movement measures were key predictors of dance quality; these were variability and amplitude of movements of the neck and trunk, and speed of movements of the right knee. In summary, we have identified specific movements within men's dance that influence women's perceptions of dancing ability. We suggest that such movements may form honest signals of male quality in terms of health, vigour or strength, though this remains to be confirmed.


Assuntos
Corte/psicologia , Dança , Adolescente , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Masculino
6.
J Strength Cond Res ; 23(4): 1175-80, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19528850

RESUMO

Caplan, N, Rogers, R, Parr, MK, and Hayes, PR. The effect of proprioceptive neuromuscular facilitation and static stretch training on running mechanics. J Strength Cond Res 23(4): 1175-1180, 2009-There is a long-standing belief that increased range of movement (RoM) at the hip or knee will improve running mechanics; however, few studies have examined the effect of such an increase in RoM. The aim of this study was to determine the influence of 2 methods of stretch training (static and proprioceptive neuromuscular facilitation [PNF]) on high-velocity running. Eighteen rugby league players were assessed for maximum sprinting velocity. They were randomly allocated into 2 stretch training groups: PNF or static. Each group trained their hamstrings 4 d x w(-1) for 5 weeks. Pre- and posttraining subjects were videoed while running at 80% of maximum velocity. The video was digitized to identify biomechanical changes in hip flexion (HF), knee extension (KE), stride length (SL), stride rate (SR), and contact time (tc). Stretch training resulted in gains (p < 0.05) in HF for the static stretch (SS) (4.9%) and PNF (7.6%) groups. There were reductions in KE (p < 0.05) for SS (1.0%) and PNF (1.6%) groups. Stride mechanics were also altered after training. There were increases in SL (p < 0.05) for SS (7.1%) and PNF (9.1%) and a concomitant reduction in SR (p < 0.05) for SS (1.9%) and PNF (4.3%). No changes were observed in tc in either group. In conclusion, both SS and PNF training improved HF RoM and running mechanics during high-velocity running. These findings suggest that stretch training undertaken at the end of regular training is effective in changing running mechanics.


Assuntos
Futebol Americano/fisiologia , Exercícios de Alongamento Muscular , Músculo Esquelético/fisiologia , Propriocepção/fisiologia , Corrida/fisiologia , Análise de Variância , Fenômenos Biomecânicos , Articulação do Quadril/fisiologia , Humanos , Articulação do Joelho/fisiologia , Masculino , Músculo Esquelético/inervação , Amplitude de Movimento Articular/fisiologia , Adulto Jovem
7.
J Sports Sci ; 25(13): 1471-8, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17852686

RESUMO

The aim of the present study was to find a more optimal blade design for rowing performance than the Big Blade, which has been shown to be less than optimal for propulsion. As well as the Big Blade, a flat Big Blade, a flat rectangular blade, and a rectangular blade with the same curvature and projected area as the Big Blade were tested in a water flume to determine their fluid dynamic characteristics at the full range of angles at which the oar blade might present itself to the water. Similarities were observed between the flat Big Blade and rectangular blades. However, the curved rectangular blade generated significantly more lift in the angle range 0-90 degrees than the curved Big Blade, although it was similar between 90 and 180 degrees. This difference was attributed to the shape of the upper and lower edges of the blade and their influence on the fluid flow around the blade. Although the influence of oar blade design on boat speed was not investigated here, the significant increases in fluid force coefficients for the curved rectangular blade suggest that this new oar blade design could elicit a practically significant improvement in rowing performance.


Assuntos
Ergometria , Esforço Físico/fisiologia , Navios , Equipamentos Esportivos , Esportes/fisiologia , Fenômenos Biomecânicos , Desenho de Equipamento , Teste de Esforço , Humanos , Educação Física e Treinamento , Projetos Piloto , Análise e Desempenho de Tarefas , Água , Movimentos da Água
8.
J Sports Sci ; 25(9): 1025-34, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17497404

RESUMO

Our aim was to present a mathematical model of rowing and sculling that allowed for a comparison of oar blade designs. The relative movement between the oar blades and water during the drive phase of the stroke was modelled, and the lift and drag forces generated by this complex interaction were determined. The model was driven by the oar shaft angular velocity about the oarlock in the horizontal plane, and was shown to be valid against measured on-water mean steady-state shell velocity for both a heavyweight men's eight and a lightweight men's single scull. Measured lift and drag force coefficients previously presented by the authors were used as inputs to the model, whichs allowed for the influence of oar blade design on rowing performance to be determined. The commonly used Big Blade, which is curved, and it's flat equivalent were compared, and blade curvature was shown to generate a 1.14% improvement in mean boat velocity, or a 17.1-m lead over 1500 m. With races being won and lost by much smaller margins than this, blade curvature would appear to play a significant role in propulsion.


Assuntos
Desenho de Equipamento/estatística & dados numéricos , Navios , Equipamentos Esportivos , Água , Ergometria , Modelos Estatísticos , Esforço Físico , Equipamentos Esportivos/estatística & dados numéricos , Reino Unido
9.
J Sports Sci ; 25(6): 643-50, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17454531

RESUMO

The purpose of this investigation was to examine the fluid dynamic characteristics of the two most commonly used oar blades: the Big Blade and the Macon. Scaled models of each blade, as well as a flat Big Blade, were tested in a water flume using a quasi-static method similar to that used in swimming and kayaking research. Measurement of the normal and tangential blade forces enabled lift and drag forces generated by the oar blades to be calculated over the full range of sweep angles observed during a rowing stroke. Lift and drag force coefficients were then calculated and compared between blades. The results showed that the Big Blade and Macon oar blades exhibited very similar characteristics. Hydraulic blade efficiency was not therefore found to be the reason for claims that the Big Blade could elicit a 2% improvement in performance over the Macon. The Big Blade was also shown to have similar characteristics to the flat plate when the angle of attack was below 90 degrees , despite significant increases in the lift coefficient when the angle of attack increased above 90 degrees . This result suggests that the Big Blade design may not be completely optimized over the whole stroke.


Assuntos
Desenho de Equipamento , Navios , Equipamentos Esportivos , Análise e Desempenho de Tarefas , Água , Ergometria , Humanos , Esforço Físico
10.
J Appl Biomech ; 21(3): 286-96, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16260848

RESUMO

The aim of the present study was to determine the effect of varying the height of the foot stretcher on the mechanical effectiveness of rowing. Ten male university level rowers rowed maximally for 3 minutes 30 seconds on a modified Concept 2 rowing ergometer. Each participant completed one trial at three foot stretcher heights. Position 1 was the original Concept 2 stretcher position, with Position 2 being located 5 cm and Position 3 being 10 cm above the original position and in the same orientation. Pull force and velocity were measured, and mean power generated by the rowers was calculated for each stroke. It was shown that in all three stretcher positions, mean power per stroke decreased as a function of time during the trial, confirming the fatiguing effects of the task. Although mean power per stroke did not differ significantly between stretcher positions at the start of the trial, p = 0.082, a significant difference was observed between the original stretcher position and Positions 2 and 3 at the end of the trial, p < 0.05. The lowest decline in mean power occurred in the highest stretcher position. It is suggested that this improvement in effectiveness is due to a reduction in the active downward vertical forces applied to the foot stretchers which does not contribute to forward propulsion, and thus a reduction in energy waste during each stroke. It was hypothesized that further raising the stretchers will continue to lead to an improvement in effectiveness until the optimum stretcher height is reached, above which effectiveness will be reduced.


Assuntos
Pé/fisiologia , Esportes/fisiologia , Adulto , Fenômenos Biomecânicos , Desenho de Equipamento , Fadiga , Humanos , Masculino , Navios
11.
J Physiol ; 551(Pt 1): 357-70, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12832494

RESUMO

These experiments were prompted by the recent discovery that the intrinsic stiffness of the ankle is inadequate to stabilise passively the body in standing. Our hope was that showing how a large inverted pendulum was manually balanced with low intrinsic stiffness would elucidate the active control of human standing. The results show that the pendulum can be satisfactorily stabilised when intrinsic stiffness is low. Analysis of sway size shows that intrinsic stiffness actually plays little part in stabilisation. The sway duration is also substantially independent of intrinsic stiffness. This suggests that the characteristic sway of the pendulum, rather than being dictated by stiffness and inertia, may result from the control pattern of hand movements. The key points revealed by these experiments are that with low intrinsic stiffness the hand provides pendulum stability by intermittently altering the bias of the spring and, on average, the hand moves in opposition to the load. The results lead to a new and testable hypothesis; namely that in standing, the calf muscle shortens as the body sways forward and lengthens as it sways backwards. These findings are difficult to reconcile with stretch reflex control of the pendulum and are of particular relevance to standing. They may also be relevant to postural maintenance in general whenever the CNS controls muscles which operate through compliant linkages. The results also suggest that in standing, rather than providing passive stability, the intrinsic stiffness acts as an energy efficient buffer which provides decoupling between muscle and body.


Assuntos
Modelos Biológicos , Fenômenos Fisiológicos do Sistema Nervoso , Equilíbrio Postural/fisiologia , Adulto , Tornozelo/fisiologia , Feminino , Mãos/fisiologia , Humanos , Perna (Membro) , Masculino , Pessoa de Meia-Idade , Movimento , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA