Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Transl Oncol ; 27: 101585, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36403505

RESUMO

BACKGROUND: We previously showed that metabolomics predicts relapse in early breast cancer (eBC) patients, unselected by age. This study aims to identify a "metabolic signature" that differentiates eBC from advanced breast cancer (aBC) patients, and to investigate its potential prognostic role in an elderly population. METHODS: Serum samples from elderly breast cancer (BC) patients enrolled in 3 onco-geriatric trials, were retrospectively analyzed via proton nuclear magnetic resonance (1H NMR) spectroscopy. Three nuclear magnetic resonance (NMR) spectra were acquired for each serum sample: NOESY1D, CPMG, Diffusion-edited. Random Forest (RF) models to predict BC relapse were built on NMR spectra, and resulting RF risk scores were evaluated by Kaplan-Meier curves. RESULTS: Serum samples from 140 eBC patients and 27 aBC were retrieved. In the eBC cohort, median age was 76 years; 77% of patients had luminal, 10% HER2-positive and 13% triple negative (TN) BC. Forty-two percent of patients had tumors >2 cm, 43% had positive axillary nodes. Using NOESY1D spectra, the RF classifier discriminated free-from-recurrence eBC from aBC with sensitivity, specificity and accuracy of 81%, 67% and 70% respectively. We tested the NOESY1D spectra of each eBC patient on the RF models already calculated. We found that patients classified as "high risk" had higher risk of disease recurrence (hazard ratio (HR) 3.42, 95% confidence interval (CI) 1.58-7.37) than patients at low-risk. CONCLUSIONS: This analysis suggests that a "metabolic signature", identified employing NMR fingerprinting, is able to predict the risk of disease recurrence in elderly patients with eBC independently from standard clinicopathological features.

2.
Breast Cancer Res ; 23(1): 38, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33761970

RESUMO

BACKGROUND: Circulating tumor cells (CTCs) are prognostic in patients with advanced breast cancer (ABC). However, no data exist about their use in patients treated with palbociclib. We analyzed the prognostic role of CTC counts in patients enrolled in the cTREnd study, a pre-planned translational sub-study of TREnd (NCT02549430), that randomized patients with ABC to palbociclib alone or palbociclib plus the endocrine therapy received in the prior line of treatment. Moreover, we evaluated RB1 gene expression on CTCs and explored its prognostic role within the cTREnd subpopulation. METHODS: Forty-six patients with ER-positive, HER2-negative ABC were analyzed. Blood samples were collected before starting palbociclib treatment (timepoint T0), after the first cycle of treatment (timepoint T1), and at disease progression (timepoint T2). CTCs were isolated and counted by CellSearch® System using the CellSearch™Epithelial Cell kit. Progression-free survival (PFS), clinical benefit (CB) during study treatment, and time to treatment failure (TTF) after study treatment were correlated with CTC counts. Samples with ≥ 5 CTCs were sorted by DEPArray system® (DA). RB1 and GAPDH gene expression levels were measured by ddPCR. RESULTS: All 46 patients were suitable for CTCs analysis. CTC count at T0 did not show significant prognostic value in terms of PFS and CB. Patients with at least one detectable CTC at T1 (n = 26) had a worse PFS than those with 0 CTCs (n = 16) (p = 0.02). At T1, patients with an increase of at least three CTCs showed reduced PFS compared to those with no increase (mPFS = 3 versus 9 months, (p = 0.004). Finally, patients with ≥ 5 CTCs at T2 (n = 6/23) who received chemotherapy as post-study treatment had a shorter TTF (p = 0.02). Gene expression data for RB1 were obtained from 19 patients. CTCs showed heterogeneous RB1 expression. Patients with detectable expression of RB1 at any timepoint showed better, but not statistically significant, outcomes than those with undetectable levels. CONCLUSIONS: CTC count seems to be a promising modality in monitoring palbociclib response. Moreover, CTC count at the time of progression could predict clinical outcome post-palbociclib. RB1 expression analysis on CTCs is feasible and may provide additional prognostic information. Results should be interpreted with caution given the small studied sample size.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Células Neoplásicas Circulantes/patologia , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico , Biomarcadores Tumorais/sangue , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Contagem de Células , Progressão da Doença , Feminino , Humanos , Células Neoplásicas Circulantes/efeitos dos fármacos , Células Neoplásicas Circulantes/metabolismo , Intervalo Livre de Progressão , Receptor ErbB-2/deficiência , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Proteínas de Ligação a Retinoblastoma/metabolismo , Resultado do Tratamento , Ubiquitina-Proteína Ligases/metabolismo
3.
Mol Oncol ; 9(1): 128-39, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25151299

RESUMO

PURPOSE: Metabolomics is a global study of metabolites in biological samples. In this study we explored whether serum metabolomic spectra could distinguish between early and metastatic breast cancer patients and predict disease relapse. METHODS: Serum samples were analysed from women with metastatic (n = 95) and predominantly oestrogen receptor (ER) negative early stage (n = 80) breast cancer using high resolution nuclear magnetic resonance spectroscopy. Multivariate statistics and a Random Forest classifier were used to create a prognostic model for disease relapse in early patients. RESULTS: In the early breast cancer training set (n = 40), metabolomics correctly distinguished between early and metastatic disease in 83.7% of cases. A prognostic risk model predicted relapse with 90% sensitivity (95% CI 74.9-94.8%), 67% specificity (95% CI 63.0-73.4%) and 73% predictive accuracy (95% CI 70.6-74.8%). These results were reproduced in an independent early breast cancer set (n = 40), with 82% sensitivity, 72% specificity and 75% predictive accuracy. Disease relapse was associated with significantly lower levels of histidine (p = 0.0003) and higher levels of glucose (p = 0.01), and lipids (p = 0.0003), compared with patients with no relapse. CONCLUSIONS: The performance of a serum metabolomic prognostic model for disease relapse in individuals with ER-negative early stage breast cancer is promising. A confirmation study is ongoing to better define the potential of metabolomics as a host and tumour-derived prognostic tool.


Assuntos
Neoplasias da Mama/sangue , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/cirurgia , Metaboloma , Metabolômica , Modelos Biológicos , Receptores de Estrogênio , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Valor Preditivo dos Testes , Prognóstico , Estudos Retrospectivos
4.
Mol Oncol ; 6(4): 437-44, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22687601

RESUMO

BACKGROUND: Metabolomics, a global study of metabolites and small molecules, is a novel expanding field. In this pilot study, metabolomics has been applied to serum samples from women with metastatic breast cancer to explore outcomes and response to treatment. PATIENTS AND METHODS: Pre-treatment and serial on-treatment serum samples were available from an international clinical trial in which 579 women with metastatic breast cancer were randomized to paclitaxel plus either a targeted anti-HER2 treatment (lapatinib) or placebo. Serum metabolomic profiles were obtained using 600 MHz nuclear magnetic resonance spectroscopy. Profiles were compared with time to progression, overall survival and treatment toxicity. RESULTS: Pre- and on-treatment serum samples were assessed for over 500 patients. Unbiased metabolomic profiles in the biologically unselected overall trial population did not correlate with outcome or toxicity. In a subgroup of patients with HER2-positive disease treated with paclitaxel plus lapatinib, metabolomic profiles from patients in the upper and lower thirds of the dataset showed significant differences for time to progression (N = 22, predictive accuracy = 89.6%) and overall survival (N = 16, predictive accuracy = 78.0%). CONCLUSIONS: In metastatic breast cancer, metabolomics may play a role in sub selecting patients with HER2 positive disease with greater sensitivity to paclitaxel plus lapatinib.


Assuntos
Neoplasias da Mama/sangue , Neoplasias da Mama/metabolismo , Metaboloma , Metabolômica , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Ensaios Clínicos Fase III como Assunto , Progressão da Doença , Feminino , Seguimentos , Humanos , Lapatinib , Metástase Neoplásica , Paclitaxel/uso terapêutico , Projetos Piloto , Quinazolinas/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptor ErbB-2/metabolismo , Análise de Sobrevida , Fatores de Tempo , Resultado do Tratamento
5.
Breast ; 21(3): 336-42, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22406214

RESUMO

There are no clinical tools to functionally assess degree of DNA damage in breast cancer. The comet assay is an accepted research tool for assessing DNA damage, however, most cancer studies have assessed lymphocytes as surrogate cells. The aim of this pilot study was to use the comet assay in early breast cancer directly in tumor tissue to compare DNA damage between and within traditionally defined subgroups, and to explore intra-tumoral heterogeneity. Scrapings of tumor and healthy breast tissue were obtained at primary surgery from 104 women. Comet assay was applied to quantitatively assess DNA damage, revealing substantial inter- and intra-subgroup variation. Marked intra-tumoral heterogeneity was evident across all subgroups. The degree of DNA damage for an individual could not be predicted by breast cancer subgroup. Comet assay warrants further study as a potential clinical tool for identification of tumoral DNA damage and ultimately, individualised use of DNA damaging therapy.


Assuntos
Neoplasias da Mama/genética , Ensaio Cometa/métodos , Análise Citogenética/métodos , Dano ao DNA , DNA de Neoplasias/genética , Adulto , Idoso , Neoplasias da Mama/patologia , Feminino , Humanos , Itália , Testes para Micronúcleos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Projetos Piloto
6.
Int J Biochem Cell Biol ; 43(7): 1010-20, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20460168

RESUMO

Metabolomics, the study of metabolites and small intermediate molecules, may play a key role in further elucidation of breast cancer. This dynamic, simultaneous assessment of thousands of metabolites allows identification of the presence, concentration and fluxes of specific metabolites, and recognition of the critical metabolic pathways recruited in carcinogenesis. Studies of tumour cell and tissue allow focused analysis on the tumour, whilst studies of biofluids have the appeal of concurrent assessment of tumour and host. Elucidation of these metabolites and pathways may provide essential insights into both the intercellular environment and host/tumour interaction, allowing recognition of new biomarkers for diagnosis and prediction of outcome, new therapy targets and novel approaches for monitoring response and toxicity. Certainly, the field of metabolomics may evolve as a valuable, complementary clinical tool. In this review, current metabolomic data in breast cancer will be presented. The dominant metabolic pathways and metabolite disturbances associated with malignant transformation of breast cells will be outlined, leading to an overview of potential clinical implications for individuals with breast cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama , Glicólise/fisiologia , Redes e Vias Metabólicas/fisiologia , Metabolômica/métodos , Biomarcadores Tumorais/análise , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Transformação Celular Neoplásica/metabolismo , Colina/análise , Colina/metabolismo , Feminino , Humanos , Prognóstico
7.
Breast Cancer Res Treat ; 118(3): 523-30, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19597704

RESUMO

Biocharacterization of circulating tumor cells (CTCs) in the peripheral blood of advanced breast cancer (ABC) patients may represent a real-time tumor biopsy. We assessed HER2 status on CTCs from blood samples of ABC patients. CTCs were separated and stained using the CellSearch System((R)). HER2 status was assessed by immunofluorescence and, when technically feasible, by fluorescence in situ hybridization. Blood samples were obtained from 66 ABC patients. Forty patients had a positive CTC sample (61%) and of these, 15 (37%) had HER2 + CTCs. We found non-concordant results in 32% of cases: 29% (8/28) of HER2-negative primary tumors had HER2-positive CTCs and 42% (5/12) of HER2-positive primary tumors had HER2-negative CTCs (k = 0.278). Our study suggests that a subset of patients with HER2-negative primary tumors develops HER2-positive CTCs during disease progression.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Genes erbB-2/genética , Células Neoplásicas Circulantes/patologia , Progressão da Doença , Feminino , Imunofluorescência , Amplificação de Genes , Humanos , Separação Imunomagnética , Pessoa de Meia-Idade , Receptor ErbB-2/biossíntese , Receptor ErbB-2/genética
8.
J Mol Med (Berl) ; 86(2): 197-209, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17885746

RESUMO

A key role of mitotic activation in neuronal cell death in early stages of Alzheimer's disease (AD) has been suggested. Apparently, terminally differentiated neurons are precluded from mitotic division, yet some phenotypic markers of cell cycling are present in AD-vulnerable brain areas. In this paper, we investigated whether dividing human neuroblastoma cells are preferentially vulnerable to amyloid aggregate toxicity in some specific cell cycle stage(s). Our data indicate that Abeta1-40/42 aggregates added to the cell culture media bind to the plasma membrane and are internalized faster in the S than in the G2/M and G1 cells possibly as a result of a lower content in membrane cholesterol in the former. Earlier and sharper increases in reactive oxygen species production triggered a membrane oxidative injury and a significant impairment of antioxidant capacity, eventually culminating with apoptotic activation in S and, to a lesser extent, in G2/M exposed cells. G1 cells appeared more resistant to the amyloid-induced oxidative attack possibly because of their higher antioxidant capacity. The high vulnerability of S cells to aggregate toxicity extends previous data suggesting that neuronal loss in AD could result from mitotic reactivation of terminally differentiated neurons with arrest in the S phase.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apoptose , Proliferação de Células , Degeneração Neural/patologia , Neuroblastoma/patologia , Estresse Oxidativo , Fragmentos de Peptídeos/metabolismo , Peptídeos beta-Amiloides/toxicidade , Apoptose/efeitos dos fármacos , Ciclo Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Colesterol/metabolismo , Endocitose , Humanos , Degeneração Neural/metabolismo , Neuroblastoma/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA