Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med Biol ; 68(13)2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37267990

RESUMO

Objective. Microbeam radiation therapy (MRT) is an alternative emerging radiotherapy treatment modality which has demonstrated effective radioresistant tumour control while sparing surrounding healthy tissue in preclinical trials. This apparent selectivity is achieved through MRT combining ultra-high dose rates with micron-scale spatial fractionation of the delivered x-ray treatment field. Quality assurance dosimetry for MRT must therefore overcome a significant challenge, as detectors require both a high dynamic range and a high spatial resolution to perform accurately.Approach. In this work, a series of radiation hard a-Si:H diodes, with different thicknesses and carrier selective contact configurations, have been characterised for x-ray dosimetry and real-time beam monitoring applications in extremely high flux beamlines utilised for MRT at the Australian Synchrotron.Results. These devices displayed superior radiation hardness under constant high dose-rate irradiations on the order of 6000 Gy s-1, with a variation in response of 10% over a delivered dose range of approximately 600 kGy. Dose linearity of each detector to x-rays with a peak energy of 117 keV is reported, with sensitivities ranging from (2.74 ± 0.02) nC/Gy to (4.96 ± 0.02) nC/Gy. For detectors with 0.8µm thick active a-Si:H layer, their operation in an edge-on orientation allows for the reconstruction of micron-size beam profiles (microbeams). The microbeams, with a nominal full-width-half-max of 50µm and a peak-to-peak separation of 400µm, were reconstructed with extreme accuracy. The full-width-half-max was observed as 55 ± 1µm. Evaluation of the peak-to-valley dose ratio and dose-rate dependence of the devices, as well as an x-ray induced charge (XBIC) map of a single pixel is also reported.Significance. These devices based on novel a-Si:H technology possess a unique combination of accurate dosimetric performance and radiation resistance, making them an ideal candidate for x-ray dosimetry in high dose-rate environments such as FLASH and MRT.


Assuntos
Silício , Síncrotrons , Raios X , Austrália , Radiometria/métodos
2.
Nanomaterials (Basel) ; 12(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36234601

RESUMO

In this paper, by means of high-resolution photoemission, soft X-ray absorption and atomic force microscopy, we investigate, for the first time, the mechanisms of damaging, induced by neutron source, and recovering (after annealing) of p-i-n detector devices based on hydrogenated amorphous silicon (a-Si:H). This investigation will be performed by mean of high-resolution photoemission, soft X-Ray absorption and atomic force microscopy. Due to dangling bonds, the amorphous silicon is a highly defective material. However, by hydrogenation it is possible to reduce the density of the defect by several orders of magnitude, using hydrogenation and this will allow its usage in radiation detector devices. The investigation of the damage induced by exposure to high energy irradiation and its microscopic origin is fundamental since the amount of defects determine the electronic properties of the a-Si:H. The comparison of the spectroscopic results on bare and irradiated samples shows an increased degree of disorder and a strong reduction of the Si-H bonds after irradiation. After annealing we observe a partial recovering of the Si-H bonds, reducing the disorder in the Si (possibly due to the lowering of the radiation-induced dangling bonds). Moreover, effects in the uppermost coating are also observed by spectroscopies.

3.
Phys Med ; 102: 73-78, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36126470

RESUMO

PURPOSE: Small photon beams used in radiotherapy techniques have inherent characteristics of charge particle disequilibrium and high-dose gradient making accurate dosimetry for such fields very challenging. By means of a 3D manufacturing technique, it is possible to create arrays of pixels with a very small sensitive volume for radiotherapy dosimetry. We investigate the impact of 3D pixels size on absorbed dose sensitivity, linearity of response with dose rate, reproducibility and beam profile measurements. METHODS: Diamond detectors with different pixel sizes have been produced in the 3DOSE experiment framework. To investigate the pixels size impact, they were tested using an Elekta Synergy LINAC. Dose rate dependence, absorbed dose sensitivity, reproducibility and beam profile measurement accuracy have been investigated and compared with PTW 60019 and IBA SFD reference dosimeters. RESULTS: All of the 3D pixels had a linear and reproducible response to the dose rate. The sensitivity of a pixel decreases with its size, although even the smallest pixel has a high absorbed dose sensitivity (15 nC/Gy). The penumbra width measured with the smallest pixel size was consistent with the PTW microDiamond and differed by 0.2 mm from the IBA SFD diode. CONCLUSIONS: The study demonstrates that variation in pixel size do not affect the linearity of response with dose rate and the reproducibility of response. Due to the 3D geometry, the absorbed dose sensitivity of the detector remains high even for the smallest pixel, furthermore the pixel size was demonstrated to be of fundamental importance in the measurement of beam profiles.


Assuntos
Diamante , Radiometria , Aceleradores de Partículas , Fótons/uso terapêutico , Dosímetros de Radiação , Radiometria/métodos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA