Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PM R ; 16(2): 150-159, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37329558

RESUMO

BACKGROUND: Selection of a foot is an important aspect of prosthetic prescription and vital to maximizing mobility and functional goals after lower limb amputation. Development of a standardized approach to soliciting user experiential preferences is needed to improve evaluation and comparison of prosthetic feet. OBJECTIVE: To develop rating scales to assess prosthetic foot preference and to evaluate use of these scales in people with transtibial amputation after trialing different prosthetic feet. DESIGN: Participant-blinded, repeated measures crossover trial. SETTING: Veterans Affairs and Department of Defense Medical Centers, laboratory setting. PARTICIPANTS: Seventy-two male prosthesis users with unilateral transtibial amputation started, and 68 participants completed this study. INTERVENTIONS: Participants trialed three mobility-level appropriate commercial prosthetic feet briefly in the laboratory. MAIN OUTCOME MEASURES: "Activity-specific" rating scales were developed to assess participants' ability with a given prosthetic foot to perform typical mobility activities (eg, walking at different speeds, on inclines, and stairs) and "global" scales to rate overall perceived energy required to walk, satisfaction, and willingness to regularly use the prosthetic foot. Foot preference was determined by comparing the rating scale scores, after laboratory testing. RESULTS: The greatest within-participant differences in scores among feet were observed in the "incline" activity, where 57% ± 6% of participants reported 2+ point differences. There was a significant association (p < .05) between all "activity-specific" rating scores (except standing) and each "global" rating score. CONCLUSIONS: The standardized rating scales developed in this study could be used to assess prosthetic foot preference in both the research and clinical settings to guide prosthetic foot prescription for people with lower limb amputation capable of a range of mobility levels.


Assuntos
Amputados , Membros Artificiais , Humanos , Masculino , Desenho de Prótese , Amputação Cirúrgica , Pé/cirurgia , Extremidade Inferior/cirurgia , Caminhada , Fenômenos Biomecânicos , Marcha
2.
J Prosthet Orthot ; 34(4): 202-212, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36157327

RESUMO

Introduction: The design and selection of lower-limb prosthetic devices is currently hampered by a shortage of evidence to drive the choice of prosthetic foot parameters. We propose a new approach wherein prostheses could be designed, specified, and provided based on individualized measurements of the benefits provided by candidate feet. In this manuscript, we present a pilot test of this evidence-based and personalized process. Methods: We previously developed a "prosthetic foot emulator," a wearable robotic system that provides users with the physical sensation of trying on different prosthetic feet before definitive fitting. Here we detail preliminary demonstrations of two possible approaches to personalizing foot design: 1) an emulation and test-drive strategy of representative commercial foot models, and 2) a prosthetist-driven tuning procedure to optimize foot parameters. Results: The first experiment demonstrated large and sometimes surprising differences in optimal prosthetic foot parameters across a variety of subjects, walking conditions, and outcome measures. The second experiment demonstrated a quick and effective simple manual tuning procedure for identifying preferred prosthetic foot parameters. Conclusions: Emulator-based approaches could improve individualization of prosthetic foot prescription. The present results motivate future clinical studies of the validity, efficacy, and economics of the approach across larger and more diverse subject populations. Clinical Relevance: Today, emulator technology is being used to accelerate research and development of novel prosthetic and orthotic devices. In the future, after further refinement and validation, this technology could benefit clinical practice by providing a means for rapid test-driving and optimal selection of clinically available prosthetic feet.

3.
J Biomech Eng ; 144(11)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35722979

RESUMO

Prosthetic foot selection for individuals with lower limb amputation relies primarily on clinician judgment. The prosthesis user rarely has an opportunity to provide experiential input into the decision by trying different feet. A prosthetic foot emulator (PFE) is a robotic prosthetic foot that could facilitate prosthesis users' ability to trial feet with different mechanical characteristics. Here, we introduce a procedure by which a robotic PFE is configured to emulate the sagittal plane effective ankle stiffness of a range of commercial prosthetic forefeet. Mechanical testing was used to collect data on five types of commercial prosthetic feet across a range of foot sizes and intended user body weights. Emulated forefoot profiles were parameterized using Bezier curve fitting on ankle torque-angle data. Mechanical testing was repeated with the PFE, across a subset of emulated foot conditions, to assess the accuracy of the emulation. Linear mixed-effects regression and Bland-Altman Limits of Agreement analyses were used to compare emulated and commercial ankle torque-angle data. Effective ankle stiffness of the emulated feet was significantly associated with the corresponding commercial prosthetic feet (p <0.001). On average, the emulated forefeet reproduced the effective ankle stiffness of corresponding commercial feet within 1%. Furthermore, differences were independent of prosthetic foot type, foot size, or user body weight. These findings suggest that commercial prosthetic foot properties can be effectively mimicked by a PFE, which is the important first step toward enabling prosthesis users to quickly trial different feet using a PFE as part of prosthetic foot prescription.


Assuntos
Membros Artificiais , Procedimentos Cirúrgicos Robóticos , Tornozelo/cirurgia , Fenômenos Biomecânicos , Marcha , Humanos , Extremidade Inferior , Desenho de Prótese , Caminhada
4.
PLoS One ; 17(5): e0268136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35536854

RESUMO

Prosthetic foot stiffness plays a key role in the functional mobility of lower limb prosthesis users. However, limited objective data exists to guide selection of the optimal prosthetic foot stiffness category for a given individual. Clinicians often must rely solely on manufacturer recommendations, which are typically based on the intended user's weight and general activity level. Availability of comparable forefoot and heel stiffness data would allow for a better understanding of differences between different commercial prosthetic feet, and also between feet of different stiffness categories and foot sizes. Therefore, this study compared forefoot and heel linear stiffness properties across manufacturer-designated stiffness categories and foot sizes. Mechanical testing was completed for five types of commercial prosthetic feet across a range of stiffness categories and three foot-sizes. Data were collected for 56 prosthetic feet, in total. Testing at two discrete angles was conducted to isolate loading of the heel and forefoot components, respectively. Each prosthetic foot was loaded for six cycles while force and displacement data were collected. Forefoot and heel measured stiffness were both significantly associated with stiffness category (p = .001). There was no evidence that the relationships between stiffness category and measured stiffness differed by foot size (stiffness category by size interaction p = .80). However, there were inconsistencies between the expected and measured stiffness changes across stiffness categories (i.e., magnitude of stiffness changes varied substantially between consecutive stiffness categories of the same feet). While statistical results support that, on average, measured stiffness is positively correlated with stiffness category, force-displacement data suggest substantial variation in measured stiffness across consecutive categories. Published objective mechanical property data for commercial prosthetic feet would likely therefore be helpful to clinicians during prescription.


Assuntos
Membros Artificiais , Marcha , Fenômenos Biomecânicos , , Desenho de Prótese
5.
Prosthet Orthot Int ; 46(5): 425-431, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35426860

RESUMO

BACKGROUND: Despite the effects of prosthetic foot mechanical properties on gait of people with lower limb amputation, scant forefoot and heel stiffness data exist to help guide prosthetic foot prescription. OBJECTIVE: To measure forefoot and heel linear stiffness properties across commonly prescribed commercial prosthetic foot models and to describe variations in stiffness across feet targeted for users with different body weights and foot sizes. STUDY DESIGN: Mechanical testing of five types of commercial prosthetic feet across nine user body weight and foot size combinations. METHODS: Linear forefoot and heel stiffness (force vs. displacement) data were collected for 41 prosthetic feet. Quasistatic testing was conducted at -15 and +20 degrees to isolate loading of the heel and forefoot, respectively. RESULTS: Overall, there was a significant relationship between user body weight and both forefoot and heel stiffness, when adjusted for foot size and type ( P < 0.001). However, there were a substantial number of inconsistencies across foot type within example user body weight and foot sizes combination. Furthermore, the relative order of forefoot stiffness across foot type differed from the relative order of heel stiffness across foot type. CONCLUSIONS: The inconsistencies and differences in relative order of forefoot and heel stiffness across commercial foot type suggest the importance of publishing objective stiffness and other mechanical properties of prosthetic feet. These data can aid clinicians in better matching mechanical properties of prosthetic feet with the functional goals and abilities of prosthesis users.


Assuntos
Membros Artificiais , Calcanhar , Fenômenos Biomecânicos , Peso Corporal , , Marcha , Humanos , Desenho de Prótese
6.
Prosthet Orthot Int ; 46(2): 206-211, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35412527

RESUMO

BACKGROUND: Mechanical testing is the principal method used to quantify properties of commercial prosthetic feet in a controlled and standardized manner. To test feet in a mechanical testing machine without overconstraining the system, tangential shear forces must be minimized. However, there is scant published information comparing techniques for reducing shear forces during mechanical testing. Furthermore, there are no data on variability in linear stiffness across testing sessions. OBJECTIVES: To compare techniques for reducing shear forces during mechanical testing of prosthetic feet and to evaluate variation in linear stiffness across testing sessions. STUDY DESIGN: Repeated measures. TECHNIQUE: Force-displacement data were collected at two pylon progression angles, one for the forefoot and one for the heel, and compared across three conditions: roller plate (RoPl), low-friction interface on the shoe (SB), and no method for reducing shear forces (NoSB). Data were collected for a range of commercial prosthetic foot models and sizes. Select data were collected over multiple days to assess variation over test sessions. RESULTS: Differences in stiffness between RoPl and SB test conditions ranged from -0.9% to +2.6% across foot models. By contrast, differences between RoPl and no method for reducing shear conditions ranged from -2.9% to +14.6%. Differences in linear stiffness between test sessions ranged from -2.2% to +3.6%. CONCLUSIONS: Methods for reducing shear force in this study demonstrated roughly equivalent effects. Thus, a low-friction interface may be used as a less expensive and less complex method for reducing shear force in prosthetic foot testing. In addition, mechanical testing results were relatively consistent across multiple test sessions, lending confidence to test consistency.


Assuntos
Membros Artificiais , Fenômenos Biomecânicos , , Marcha , Humanos , Testes Mecânicos , Desenho de Prótese
7.
J Biomech ; 49(14): 3452-3459, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27702444

RESUMO

Amputees using passive ankle-foot prostheses tend to expend more metabolic energy during walking than non-amputees, and reducing this cost has been a central motivation for the development of active ankle-foot prostheses. Increased push-off work at the end of stance has been proposed as a way to reduce metabolic energy use, but the effects of push-off work have not been tested in isolation. In this experiment, participants with unilateral transtibial amputation (N=6) walked on a treadmill at a constant speed while wearing a powered prosthesis emulator. The prosthesis delivered different levels of ankle push-off work across conditions, ranging from the value for passive prostheses to double the value for non-amputee walking, while all other prosthesis mechanics were held constant. Participants completed six acclimation sessions prior to a data collection in which metabolic rate, kinematics, kinetics, muscle activity and user satisfaction were recorded. Metabolic rate was not affected by net prosthesis work rate (p=0.5; R2=0.007). Metabolic rate, gait mechanics and muscle activity varied widely across participants, but no participant had lower metabolic rate with higher levels of push-off work. User satisfaction was affected by push-off work (p=0.002), with participants preferring values of ankle push-off slightly higher than in non-amputee walking, possibly indicating other benefits. Restoring or augmenting ankle push-off work is not sufficient to improve energy economy for lower-limb amputees. Additional necessary conditions might include alternate timing or control, individualized tuning, or particular subject characteristics.


Assuntos
Articulação do Tornozelo/fisiopatologia , Tornozelo/fisiopatologia , Prótese Articular , Adulto , Amputação Cirúrgica , Amputados , Fenômenos Biomecânicos , Metabolismo Energético , Marcha/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Satisfação do Paciente
8.
J Neuroeng Rehabil ; 12: 21, 2015 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-25889201

RESUMO

BACKGROUND: Robotic ankle-foot prostheses that provide net positive push-off work can reduce the metabolic rate of walking for individuals with amputation, but benefits might be sensitive to push-off timing. Simple walking models suggest that preemptive push-off reduces center-of-mass work, possibly reducing metabolic rate. Studies with bilateral exoskeletons have found that push-off beginning before leading leg contact minimizes metabolic rate, but timing was not varied independently from push-off work, and the effects of push-off timing on biomechanics were not measured. Most lower-limb amputations are unilateral, which could also affect optimal timing. The goal of this study was to vary the timing of positive prosthesis push-off work in isolation and measure the effects on energetics, mechanics and muscle activity. METHODS: We tested 10 able-bodied participants walking on a treadmill at 1.25 m · s(-1). Participants wore a tethered ankle-foot prosthesis emulator on one leg using a rigid boot adapter. We programmed the prosthesis to apply torque bursts that began between 46% and 56% of stride in different conditions. We iteratively adjusted torque magnitude to maintain constant net positive push-off work. RESULTS: When push-off began at or after leading leg contact, metabolic rate was about 10% lower than in a condition with Spring-like prosthesis behavior. When push-off began before leading leg contact, metabolic rate was not different from the Spring-like condition. Early push-off led to increased prosthesis-side vastus medialis and biceps femoris activity during push-off and increased variability in step length and prosthesis loading during push-off. Prosthesis push-off timing had no influence on intact-side leg center-of-mass collision work. CONCLUSIONS: Prosthesis push-off timing, isolated from push-off work, strongly affected metabolic rate, with optimal timing at or after intact-side heel contact. Increased thigh muscle activation and increased human variability appear to have caused the lack of reduction in metabolic rate when push-off was provided too early. Optimal timing with respect to opposite heel contact was not different from normal walking, but the trends in metabolic rate and center-of-mass mechanics were not consistent with simple model predictions. Optimal push-off timing should also be characterized for individuals with amputation, since meaningful benefits might be realized with improved timing.


Assuntos
Tornozelo/fisiologia , Membros Artificiais , Metabolismo Energético/fisiologia , Pé/fisiologia , Robótica , Caminhada/fisiologia , Algoritmos , Fenômenos Biomecânicos , Biônica , Eletromiografia , Feminino , Marcha/fisiologia , Humanos , Masculino , Fenômenos Mecânicos , Músculo Esquelético/fisiologia , Desenho de Prótese , Torque , Adulto Jovem
9.
IEEE Int Conf Robot Autom ; 2015: 6445-6450, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-27570639

RESUMO

Robotic prostheses can improve walking performance for amputees, but prescription of these devices has been hindered by their high cost and uncertainty about the degree to which individuals will benefit. The typical prescription process cannot well predict how an individual will respond to a device they have never used because it bases decisions on subjective assessment of an individual's current activity level. We propose a new approach in which individuals 'test drive' candidate devices using a prosthesis emulator while their walking performance is quantitatively assessed and results are distilled to inform prescription. In this system, prosthesis behavior is controlled by software rather than mechanical implementation, so users can quickly experience a broad range of devices. To test the viability of the approach, we developed a prototype emulator and assessment protocol, leveraging hardware and methods we previously developed for basic science experiments. We demonstrated emulations across the spectrum of commercially available prostheses, including traditional (e.g. SACH), dynamic-elastic (e.g. FlexFoot), and powered robotic (e.g. BiOM® T2) prostheses. Emulations exhibited low error with respect to reference data and provided subjectively convincing representations of each device. We demonstrated an assessment protocol that differentiated device classes for each individual based on quantitative performance metrics, providing feedback that could be used to make objective, personalized device prescriptions.

10.
Sci Rep ; 4: 7213, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25467389

RESUMO

Individuals with unilateral below-knee amputation expend more energy than non-amputees during walking and exhibit reduced push-off work and increased hip work in the affected limb. Simple dynamic models of walking suggest a possible solution, predicting that increasing prosthetic ankle push-off should decrease leading limb collision, thereby reducing overall energy requirements. We conducted a rigorous experimental test of this idea wherein ankle-foot prosthesis push-off work was incrementally varied in isolation from one-half to two-times normal levels while subjects with simulated amputation walked on a treadmill at 1.25 m · s(-1). Increased prosthesis push-off significantly reduced metabolic energy expenditure, with a 14% reduction at maximum prosthesis work. In contrast to model predictions, however, collision losses were unchanged, while hip work during swing initiation was decreased. This suggests that powered ankle push-off reduces walking effort primarily through other mechanisms, such as assisting leg swing, which would be better understood using more complete neuromuscular models.


Assuntos
Articulação do Tornozelo/fisiologia , Tornozelo/fisiologia , Caminhada/fisiologia , Adulto , Amputados , Membros Artificiais , Metabolismo Energético/fisiologia , Marcha/fisiologia , Humanos , Masculino , Próteses e Implantes , Torque
11.
J Biomech Eng ; 136(3): 035002, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24337103

RESUMO

Robotic prostheses have the potential to significantly improve mobility for people with lower-limb amputation. Humans exhibit complex responses to mechanical interactions with these devices, however, and computational models are not yet able to predict such responses meaningfully. Experiments therefore play a critical role in development, but have been limited by the use of product-like prototypes, each requiring years of development and specialized for a narrow range of functions. Here we describe a robotic ankle-foot prosthesis system that enables rapid exploration of a wide range of dynamical behaviors in experiments with human subjects. This emulator comprises powerful off-board motor and control hardware, a flexible Bowden cable tether, and a lightweight instrumented prosthesis, resulting in a combination of low mass worn by the human (0.96 kg) and high mechatronic performance compared to prior platforms. Benchtop tests demonstrated closed-loop torque bandwidth of 17 Hz, peak torque of 175 Nm, and peak power of 1.0 kW. Tests with an anthropomorphic pendulum "leg" demonstrated low interference from the tether, less than 1 Nm about the hip. This combination of low worn mass, high bandwidth, high torque, and unrestricted movement makes the platform exceptionally versatile. To demonstrate suitability for human experiments, we performed preliminary tests in which a subject with unilateral transtibial amputation walked on a treadmill at 1.25 ms-1 while the prosthesis behaved in various ways. These tests revealed low torque tracking error (RMS error of 2.8 Nm) and the capacity to systematically vary work production or absorption across a broad range (from -5 to 21 J per step). These results support the use of robotic emulators during early stage assessment of proposed device functionalities and for scientific study of fundamental aspects of human-robot interaction. The design of simple, alternate end-effectors would enable studies at other joints or with additional degrees of freedom.


Assuntos
Articulação do Tornozelo/fisiologia , Tornozelo/fisiologia , Pé/fisiologia , Prótese Articular , Locomoção/fisiologia , Modelos Biológicos , Robótica/instrumentação , Biomimética/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento/instrumentação , Humanos , Desenho de Prótese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA