Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PeerJ ; 9: e9616, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33585077

RESUMO

Indigenous Peoples and Local Communities (IPLCs) have inhabited coastal areas, the seas, and remote islands for millennia, and developed place-based traditional ancestral knowledge and diversified livelihoods associated with the biocultural use of marine and coastal ecosystems. Through their cultural traditions, customary wise practices, and holistic approaches to observe, monitor, understand, and appreciate the Natural World, IPLCs have been preserving, managing, and sustainably using seascapes and coastal landscapes, which has been essential for biodiversity conservation. The international community has more than ever recognized the central role of IPLCs in the conservation of biodiversity-rich ecosystems, in particular, for the achievement of the Global Biodiversity Targets determined by the Parties to the United Nations Convention on Biological Diversity to tackle biodiversity loss. However, much remains to be done to fully recognize and protect at national levels IPLCs' Traditional Biodiversity Knowledge (TBK), ways of life, and their internationally recognized rights to inhabit, own, manage and govern traditional lands, territories, and waters, which are increasingly threatened. At the 2018 4th World Conference on Marine Biodiversity held in Montréal, Canada, eight themed working groups critically discussed progress to date and barriers that have prevented the achievement of the Aichi Biodiversity Targets agreed for the period 2011-2020, and priority actions for the Post-2020 Global Biodiversity Framework. Discussions in the "Application of Biodiversity Knowledge" working group focused on Targets 11 and 18 and the equal valuation of diverse Biodiversity Knowledge Systems (BKS). This Perspective Paper summarizes the 10 Priority Actions identified for a holistic biodiversity conservation, gender equality and human rights-based approach that strengthens the role of IPLCs as biodiversity conservation decision-makers and managers at national and international levels. Furthermore, the Perspective proposes a measurable Target 18 post-2020 and discusses actions to advance the recognition of community-based alternative conservation schemes and TBK to ensure the long-lasting conservation, customary biocultural use, and sustainable multi-functional management of nature around the globe.

2.
Appl Biochem Biotechnol ; 183(4): 1304-1322, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28488119

RESUMO

In the present study, the capacity of the cyanobacterium Leptolyngbya sp. CChF1 to remove CO2 from real and synthetic biogas was evaluated. The identification of the cyanobacterium, isolated from the lake Chapala, was carried out by means of morphological and molecular analyses, while its potential for CO2 removal from biogas streams was evaluated by kinetic experiments and optimized by a central composite design coupled to a response surface methodology. Results demonstrated that Leptolyngbya sp. CChF1 is able to remove CO2 and grow indistinctly in real or synthetic biogas streams, showing tolerance to high concentrations of CO2 and CH4, 25 and 75%, respectively. The characterization of the biomass composition at the end of the kinetic assays revealed that the main accumulated by-products under both biogas streams were lipids, followed by proteins and carbohydrates. Regarding the optimization experiments, light intensity and temperature were the studied variables, while synthetic biogas was the carbon source. Results showed that light intensity was significant for CO2 capture efficiency (p = 0.0290), while temperature was significant for biomass production (p = 0.0024). The predicted CO2 capture efficiency under optimal conditions (27.1 °C and 920 lx) was 93.48%. Overall, the results of the present study suggest that Leptolyngbya sp. CChF1 is a suitable candidate for biogas upgrading.


Assuntos
Biocombustíveis , Dióxido de Carbono/metabolismo , Cianobactérias/metabolismo , Lagos/microbiologia , Microbiologia da Água , Cianobactérias/isolamento & purificação , México
3.
Zootaxa ; 4277(2): 285-288, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-30308654

RESUMO

The Galapagos slipper lobster Scyllarides astori was found for the first time off western Mexico mainland. A male and two female specimens were collected in south Jalisco and north Colima. This represents a new record from central Pacific coast of Mexico and a range extension of 700 km southwards, as the species was previously reported from the Gulf of California, 780 km eastwards from Revillagigedo Archipelago and 2400 km northwestwards from Isla del Coco and Galapagos Archipelago.


Assuntos
Nephropidae , Animais , California , Feminino , Masculino , Oceano Pacífico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA