Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 200: 106840, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38909691

RESUMO

The escalating challenges of Helicobacter pylori-induced gastric complications, driven by rising antibiotic resistance and persistent cancer risks, underscore the demand for innovative therapeutic strategies. This study addresses this urgency through the development of tailored semi-interpenetrating polymer networks (semi-IPN) serving as gastroretentive matrices for amoxicillin (AMOX). They are biodegradable, absorb significant volume of simulated gastric fluid (swelling index > 360 %) and exhibit superporous microstructures, remarkable mucoadhesion, and buoyancy. The investigation includes assessment at pH 1.2 for comparative analysis with prior studies and, notably, at pH 5.0, reflecting the acidic environment in H. pylori-infected stomachs. The semi-IPN demonstrated gel-like structures, maintaining integrity throughout the 24-hour controlled release study, and disintegrating upon completing their intended function. Evaluated in gastroretentive drug delivery system performance, AMOX release at pH 1.2 and pH 5.0 over 24 h (10 %-100 %) employed experimental design methodology, elucidating dominant release mechanisms. Their mucoadhesive, buoyant, three-dimensional scaffold stability, and gastric biodegradability make them ideal for accommodating substantial AMOX quantities. Furthermore, exploring the inclusion of the potassium-competitive acid blocker (P-CAB) vonoprazan (VONO) in AMOX-loaded formulations shows promise for precise and effective drug delivery. This innovative approach has the potential to combat H. pylori infections, thereby preventing the gastric cancer induced by this pathogen.


Assuntos
Amoxicilina , Antibacterianos , Mucosa Gástrica , Helicobacter pylori , Polímeros , Helicobacter pylori/efeitos dos fármacos , Amoxicilina/administração & dosagem , Amoxicilina/química , Amoxicilina/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia , Polímeros/química , Polímeros/administração & dosagem , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Mucosa Gástrica/efeitos dos fármacos , Liberação Controlada de Fármacos , Humanos , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Concentração de Íons de Hidrogênio , Sistemas de Liberação de Medicamentos/métodos , Preparações de Ação Retardada/administração & dosagem , Pirróis/química , Pirróis/administração & dosagem , Pirróis/farmacologia , Sulfonamidas
2.
Polymers (Basel) ; 16(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611138

RESUMO

This study introduces an efficient strategy for synthesizing polyhydroxyurethane-based multicomponent hydrogels with enhanced rheological properties. In a single-step process, 3D materials composed of Polymer 1 (PHU) and Polymer 2 (PVA or gelatin) were produced. Polymer 1, a crosslinked polyhydroxyurethane (PHU), grew within a colloidal solution of Polymer 2, forming an interconnected network. The synthesis of Polymer 1 utilized a Non-Isocyanate Polyurethane (NIPU) methodology based on the aminolysis of bis(cyclic carbonate) (bisCC) monomers derived from 1-thioglycerol and 1,2-dithioglycerol (monomers A and E, respectively). This method, applied for the first time in Semi-Interpenetrating Network (SIPN) formation, demonstrated exceptional orthogonality since the functional groups in Polymer 2 do not interfere with Polymer 1 formation. Optimizing PHU formation involved a 20-trial methodology, identifying influential variables such as polymer concentration, temperature, solvent (an aprotic and a protic solvent), and the organo-catalyst used [a thiourea derivative (TU) and 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU)]. The highest molecular weights were achieved under near-bulk polymerization conditions using TU-protic and DBU-aprotic as catalyst-solvent combinations. Monomer E-based PHU exhibited higher Mw¯ than monomer A-based PHU (34.1 kDa and 16.4 kDa, respectively). Applying the enhanced methodology to prepare 10 multicomponent hydrogels using PVA or gelatin as the polymer scaffold revealed superior rheological properties in PVA-based hydrogels, exhibiting solid-like gel behavior. Incorporating monomer E enhanced mechanical properties and elasticity (with loss tangent values of 0.09 and 0.14). SEM images unveiled distinct microstructures, including a sponge-like pattern in certain PVA-based hydrogels when monomer A was chosen, indicating the formation of highly superporous interpenetrated materials. In summary, this innovative approach presents a versatile methodology for obtaining advanced hydrogel-based systems with potential applications in various biomedical fields.

3.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768604

RESUMO

An increase in resistance to key antibiotics has made the need for novel treatments for the gastric colonization of Helicobacter pylori (H. pylori) a matter of the utmost urgency. Recent studies tackling this topic have focused either on the discovery of new compounds to ameliorate therapeutic regimes (such as vonoprazan) or the synthesis of gastroretentive drug delivery systems (GRDDSs) to improve the pharmacokinetics of oral formulations. The use of semi-interpenetrating polymer networks (semi-IPNs) that can act as super-porous hydrogels for this purpose is proposed in the present work, specifically those displaying low ecological footprint, easy synthesis, self-floating properties, high encapsulation efficiency for drugs such as amoxicillin (AMOX), great mucoadhesiveness, and optimal mechanical strength when exposed to stomach-like fluids. To achieve such systems, biodegradable synthetic copolymers containing acid-labile monomers were prepared and interpenetrated with guar gum (GG) in a one-pot polymerization process based on thiol-ene click reactions. The resulting matrices were characterized by SEM, GPC, TGA, NMR, and rheology studies, and the acidic hydrolysis of the acid-sensitive polymers was also studied. Results confirm that some of the obtained matrices are expected to perform optimally as GRDDSs for the sustained release of active pharmaceutical ingredients at the gastrointestinal level, being a priori facilitated by its disaggregation. Therefore, the optimal performance of these systems is assessed by varying the molar ratio of the labile monomer in the matrices.


Assuntos
Cyamopsis , Helicobacter pylori , Liberação Controlada de Fármacos , Porosidade , Sistemas de Liberação de Medicamentos , Hidrogéis/química
4.
Macromol Rapid Commun ; 43(11): e2200145, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35426201

RESUMO

A robust strategy is reported to build perfectly monodisperse star polycations combining a trehalose-based cyclooligosaccharide (cyclotrehalan, CT) central core onto which oligoethyleneimine radial arms are installed. The architectural perfection of the compounds is demonstrated by a variety of physicochemical techniques, including NMR, MS, DLS, TEM, and GPC. Key to the strategy is the possibility of customizing the cavity size of the macrocyclic platform to enable/prevent the inclusion of adamantane motifs. These properties can be taken into advantage to implement sequential levels of stimuli responsiveness by combining computational design, precision chemistry and programmed host-guest interactions. Specifically, it is shown that supramolecular dimers implying a trimeric CT-tetraethyleneimine star polycation and purposely designed bis-adamantane guests are preorganized to efficiently complex plasmid DNA (pDNA) into transfection-competent nanocomplexes. The stability of the dimer species is responsive to the protonation state of the cationic clusters, resulting in dissociation at acidic pH. This process facilitates endosomal escape, but reassembling can take place in the cytosol then handicapping pDNA nuclear import. By equipping the ditopic guest with a redox-sensitive disulfide group, recapturing phenomena are prevented, resulting in drastically improved transfection efficiencies both in vivo and in vitro.


Assuntos
Adamantano , Polímeros , Dimerização , Concentração de Íons de Hidrogênio , Oxirredução , Polieletrólitos , Polímeros/química
5.
Chemistry ; 27(36): 9429-9438, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33882160

RESUMO

Instilling segregated cationic and lipophilic domains with an angular disposition in a trehalose-based trifaceted macrocyclic scaffold allows engineering patchy molecular nanoparticles leveraging directional interactions that emulate those controlling self-assembling processes in viral capsids. The resulting trilobular amphiphilic derivatives, featuring a Mickey Mouse architecture, can electrostatically interact with plasmid DNA (pDNA) and further engage in hydrophobic contacts to promote condensation into transfectious nanocomplexes. Notably, the topology and internal structure of the cyclooligosaccharide/pDNA co-assemblies can be molded by fine-tuning the valency and characteristics of the cationic and lipophilic patches, which strongly impacts the transfection efficacy in vitro and in vivo. Outstanding organ selectivities can then be programmed with no need of incorporating a biorecognizable motif in the formulation. The results provide a versatile strategy for the construction of fully synthetic and perfectly monodisperse nonviral gene delivery systems uniquely suited for optimization schemes by making cyclooligosaccharide patchiness the focus.


Assuntos
Ciclodextrinas , Nanopartículas , DNA , Técnicas de Transferência de Genes , Plasmídeos/genética , Transfecção
6.
Biomacromolecules ; 21(12): 5173-5188, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33084317

RESUMO

The architectural perfection and multivalency of dendrimers have made them useful for biodelivery via peripheral functionalization and the adjustment of dendrimer generations. Modulation of the core-forming and internal matrix-forming structures offers virtually unlimited opportunities for further optimization, but only in a few cases this has been made compatible with strict diastereomeric purity over molecularly diverse series, low toxicity, and limited synthetic effort. Fully regular star polymers built on biocompatible macrocyclic platforms, such as hyperbranched cyclodextrins, offer advantages in terms of facile synthesis and flexible compositions, but core elaboration in terms of shape and function becomes problematic. Here we report the synthesis and characterization of star polymers consisting of functional trehalose-based macrocyclic cores (cyclotrehalans, CTs) and aminothiourea dendron arms, which can be efficiently synthesized from sequential click reactions of orthogonal monomers, display no cytotoxicity, and efficiently complex and deliver plasmid DNA in vitro and in vivo. When compared with some commercial cationic dendrimers or polymers, the new CT-scaffolded star polymers show better transfection efficiencies in several cell lines and structure-dependent cell selectivity patterns. Notably, the CT core could be predefined to exert Zn(II) complexing or molecular inclusion capabilities, which has been exploited to synergistically boost cell transfection by orders of magnitude and modulate the organ tropism in vivo.


Assuntos
Dendrímeros , Polímeros , Cátions , DNA , Plasmídeos , Transfecção
7.
Chemistry ; 26(66): 15259-15269, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-32710799

RESUMO

Original molecular vectors that ensure broad flexibility to tune the shape and surface properties of plasmid DNA (pDNA) condensates are reported herein. The prototypic design involves a cyclodextrin (CD) platform bearing a polycationic cluster at the primary face and a doubly linked aromatic module bridging two consecutive monosaccharide units at the secondary face that behaves as a topology-encoding element. Subtle differences at the molecular level then translate into disparate morphologies at the nanoscale, including rods, worms, toroids, globules, ellipsoids, and spheroids. In vitro evaluation of the transfection capabilities revealed marked selectivity differences as a function of nanocomplex morphology. Remarkably high transfection efficiencies were associated with ellipsoidal or spherical shapes with a lamellar internal arrangement of pDNA chains and CD bilayers. Computational studies support that the stability of such supramolecular edifices is directly related to the tendency of the molecular vector to form noncovalent dimers upon DNA templating. Because the stability of the dimers depends on the protonation state of the polycationic clusters, the coaggregates display pH responsiveness, which facilitates endosomal escape and timely DNA release, a key step in successful transfection. The results provide a versatile strategy for the construction of fully synthetic and perfectly monodisperse nonviral gene delivery systems uniquely suited for optimization schemes.


Assuntos
Ciclodextrinas , DNA/química , Técnicas de Transferência de Genes , Plasmídeos/genética , Transfecção
8.
Chem Commun (Camb) ; 55(57): 8227-8230, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31268107

RESUMO

An original family of multivalent vectors encompassing gemini and facial amphiphilicity, namely cationic Siamese twin surfactants, has been prepared from the disaccharide trehalose; molecular engineering lets us modulate the self-assembling properties and the topology of the nanocomplexes with plasmid DNA for efficient gene delivery in vitro and in vivo.


Assuntos
Nanoestruturas/química , Plasmídeos/química , Tensoativos/química , Transfecção/métodos , Trealose/química , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Camundongos , Plasmídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA