Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Psychiatry ; 27(11): 4485-4501, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36224260

RESUMO

Mood disorders (MD) are a major burden on society as their biology remains poorly understood, challenging both diagnosis and therapy. Among many observed biological dysfunctions, homeostatic dysregulation, such as metabolic syndrome (MeS), shows considerable comorbidity with MD. Recently, CREB-regulated transcription coactivator 1 (CRTC1), a regulator of brain metabolism, was proposed as a promising factor to understand this relationship. Searching for imaging biomarkers and associating them with pathophysiological mechanisms using preclinical models can provide significant insight into these complex psychiatric diseases and help the development of personalized healthcare. Here, we used neuroimaging technologies to show that deletion of Crtc1 in mice leads to an imaging fingerprint of hippocampal metabolic impairment related to depressive-like behavior. By identifying a deficiency in hippocampal glucose metabolism as the underlying molecular/physiological origin of the markers, we could assign an energy-boosting mood-stabilizing treatment, ebselen, which rescued behavior and neuroimaging markers. Finally, our results point toward the GABAergic system as a potential therapeutic target for behavioral dysfunctions related to metabolic disorders. This study provides new insights on Crtc1's and MeS's relationship to MD and establishes depression-related markers with clinical potential.


Assuntos
Hipocampo , Fatores de Transcrição , Camundongos , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Hipocampo/metabolismo , Comportamento Animal/fisiologia , Depressão/genética , Depressão/metabolismo
2.
Front Mol Neurosci ; 15: 810641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242012

RESUMO

Depression and obesity are major public health concerns, and there is mounting evidence that they share etiopathophysiological mechanisms. The neurobiological pathways involved in both mood and energy balance regulation are complex, multifactorial and still incompletely understood. As a coactivator of the pleiotropic transcription factor cAMP response element-binding protein (CREB), CREB-regulated transcription coactivator 1 (CRTC1) has recently emerged as a novel regulator of neuronal plasticity and brain functions, while CRTC1 dysfunction has been associated with neurodegenerative and psychiatric diseases. This review focuses on recent evidence emphasizing the critical role of CRTC1 in the neurobiology of depression and comorbid obesity. We discuss the role of CRTC1 downregulation in mediating chronic stress-induced depressive-like behaviors, and antidepressant response in the light of the previously characterized Crtc1 knockout mouse model of depression. The putative role of CRTC1 in the alteration of brain energy homeostasis observed in depression is also discussed. Finally, we highlight rodent and human studies supporting the critical involvement of CRTC1 in depression-associated obesity.

3.
J Mol Cell Cardiol ; 127: 31-43, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30521840

RESUMO

The sympathetic nervous system is the main stimulator of cardiac function. While acute activation of the ß-adrenoceptors exerts positive inotropic and lusitropic effects by increasing cAMP and Ca2+, chronically enhanced sympathetic tone with changed ß-adrenergic signaling leads to alterations of gene expression and remodeling. The CREB-regulated transcription coactivator 1 (CRTC1) is activated by cAMP and Ca2+. In the present study, the regulation of CRTC1 in cardiomyocytes and its effect on cardiac function and growth was investigated. In cardiomyocytes, isoprenaline induced dephosphorylation, and thus activation of CRTC1, which was prevented by propranolol. Crtc1-deficient mice exhibited left ventricular dysfunction, hypertrophy and enlarged cardiomyocytes. However, isoprenaline-induced contractility of isolated trabeculae or phosphorylation of cardiac troponin I, cardiac myosin-binding protein C, phospholamban, and ryanodine receptor were not altered, suggesting that cardiac dysfunction was due to the global lack of Crtc1. The mRNA and protein levels of the Gαq GTPase activating protein regulator of G-protein signaling 2 (RGS2) were lower in hearts of Crtc1-deficient mice. Chromatin immunoprecipitation and reporter gene assays showed stimulation of the Rgs2 promoter by CRTC1. In Crtc1-deficient cardiomyocytes, phosphorylation of the Gαq-downstream kinase ERK was enhanced. CRTC1 content was higher in cardiac tissue from patients with aortic stenosis or hypertrophic cardiomyopathy and from two murine models mimicking these diseases. These data suggest that increased CRTC1 in maladaptive hypertrophy presents a compensatory mechanism to delay disease progression in part by enhancing Rgs2 gene transcription. Furthermore, the present study demonstrates an important role of CRTC1 in the regulation of cardiac function and growth.


Assuntos
Cardiomegalia/metabolismo , Fatores de Transcrição/metabolismo , Animais , Cardiomegalia/diagnóstico por imagem , Cardiomegalia/fisiopatologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Proteínas RGS/genética , Proteínas RGS/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais , Fatores de Transcrição/deficiência
4.
Int J Obes (Lond) ; 43(6): 1295-1304, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30301962

RESUMO

BACKGROUND/OBJECTIVES: High-fat diet consumption is known to trigger an inflammatory response in the hypothalamus, which has been characterized by an initial expression of pro-inflammatory genes followed by hypothalamic astrocytosis, microgliosis, and the appearance of neuronal injury markers. The specific effects of high-fat diet on hypothalamic energy metabolism and neurotransmission are however not yet known and have not been investigated before. SUBJECTS/METHODS: We used 1H and 13C magnetic resonance spectroscopy (MRS) and immunofluorescence techniques to evaluate in vivo the consequences of high-saturated fat diet administration to mice, and explored the effects on hypothalamic metabolism in three mouse cohorts at different time points for up to 4 months. RESULTS: We found that high-fat diet increases significantly the hypothalamic levels of glucose (P < 0.001), osmolytes (P < 0.001), and neurotransmitters (P < 0.05) from 2 months of diet, and alters the rates of metabolic (P < 0.05) and neurotransmission fluxes (P < 0.001), and the contribution of non-glycolytic substrates to hypothalamic metabolism (P < 0.05) after 10 weeks of high-fat feeding. CONCLUSIONS/INTERPRETATION: We report changes that reveal a high-fat diet-induced alteration of hypothalamic metabolism and neurotransmission that is quantifiable by 1H and 13C MRS in vivo, and present the first evidence of the extension of the inflammation pathology to a localized metabolic imbalance.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/farmacologia , Metabolismo Energético/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Animais , Gorduras na Dieta/administração & dosagem , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Hipotálamo/fisiopatologia , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo
5.
Transl Psychiatry ; 7(12): 1269, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29217834

RESUMO

Obesity and depression are major public health concerns, and there is increasing evidence that they share etiological mechanisms. CREB-regulated transcription coactivator 1 (CRTC1) participates in neurobiological pathways involved in both mood and energy balance regulation. Crtc1 -/- mice rapidly develop a depressive-like and obese phenotype in early adulthood, and are therefore a relevant animal model to explore possible common mechanisms underlying mood disorders and obesity. Here, the obese phenotype of male and female Crtc1 -/- mice was further characterized by investigating CRTC1's role in the homeostatic and hedonic regulation of food intake, as well as its influence on daily locomotor activity. Crtc1 -/- mice showed a strong gender difference in the homeostatic regulation of energy balance. Mutant males were hyperphagic and rapidly developed obesity on normal chow diet, whereas Crtc1 -/- females exhibited mild late-onset obesity without hyperphagia. Overeating of mutant males was accompanied by alterations in the expression of several orexigenic and anorexigenic hypothalamic genes, thus confirming a key role of CRTC1 in the central regulation of food intake. No alteration in preference and conditioned response for saccharine was observed in Crtc1 -/- mice, suggesting that mutant males' hyperphagia was not due to an altered hedonic regulation of food intake. Intriguingly, mutant males exhibited a hyperphagic behavior only during the resting (diurnal) phase of the light cycle. This abnormal feeding behavior was associated with a higher diurnal locomotor activity indicating that the lack of CRTC1 may affect circadian rhythmicity. Collectively, these findings highlight the male-specific involvement of CRTC1 in the central control of energy balance and circadian locomotor activity.


Assuntos
Ritmo Circadiano/fisiologia , Depressão/fisiopatologia , Metabolismo Energético/fisiologia , Atividade Motora/fisiologia , Fatores de Transcrição/genética , Animais , Comportamento Animal/fisiologia , Ritmo Circadiano/genética , Depressão/genética , Modelos Animais de Doenças , Metabolismo Energético/genética , Feminino , Hiperfagia/genética , Hiperfagia/fisiopatologia , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/genética , Obesidade/genética , Obesidade/fisiopatologia , Fatores Sexuais
6.
Trends Neurosci ; 40(12): 720-733, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29097017

RESUMO

The brain has the ability to sense, coordinate, and respond to environmental changes through biological processes involving activity-dependent gene expression. cAMP-response element binding protein (CREB)-regulated transcription coactivators (CRTCs) have recently emerged as novel transcriptional regulators of essential biological functions, while their deregulation is linked to age-related human diseases. In the brain, CRTCs are unique signaling factors that act as sensors and integrators of hormonal, metabolic, and neural signals contributing to brain plasticity and brain-body communication. In this review, we focus on the regulatory mechanisms and functions of CRTCs in brain metabolism, lifespan, circadian rhythm, and synaptic mechanisms underlying memory and emotion. We also discuss how CRTCs deregulation in cognitive and emotional disorders may provide the basis for potential clinical and therapeutic applications in neurodegenerative and psychiatric diseases.


Assuntos
Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fatores de Transcrição/metabolismo , Animais , Encéfalo/patologia , Humanos
7.
Sci Rep ; 7: 43093, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266561

RESUMO

The homeodomain transcription factor Nkx2.1 (NK2 homeobox 1) controls cell differentiation of telencephalic GABAergic interneurons and oligodendrocytes. Here we show that Nkx2.1 also regulates astrogliogenesis of the telencephalon from embryonic day (E) 14.5 to E16.5. Moreover we identify the different mechanisms by which Nkx2.1 controls the telencephalic astrogliogenesis. In Nkx2.1 knockout (Nkx2.1-/-) mice a drastic loss of astrocytes is observed that is not related to cell death. Further, in vivo analysis using BrdU incorporation reveals that Nkx2.1 affects the proliferation of the ventral neural stem cells that generate early astrocytes. Also, in vitro neurosphere assays showed reduced generation of astroglia upon loss of Nkx2.1, which could be due to decreased precursor proliferation and possibly defects in glial specification/differentiation. Chromatin immunoprecipitation analysis and in vitro co-transfection studies with an Nkx2.1-expressing plasmid indicate that Nkx2.1 binds to the promoter of glial fibrillary acidic protein (GFAP), primarily expressed in astrocytes, to regulate its expression. Hence, Nkx2.1 controls astroglial production spatiotemporally in embryos by regulating proliferation of the contributing Nkx2.1-positive precursors.


Assuntos
Astrócitos/metabolismo , Diferenciação Celular , Desenvolvimento Embrionário , Telencéfalo/metabolismo , Fator Nuclear 1 de Tireoide/fisiologia , Animais , Astrócitos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteína Glial Fibrilar Ácida/genética , Camundongos , Camundongos Knockout , Telencéfalo/fisiologia , Fator Nuclear 1 de Tireoide/metabolismo
8.
Neuropharmacology ; 107: 111-121, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26970016

RESUMO

Major depression is a highly complex disabling psychiatric disorder affecting millions of people worldwide. Despite the availability of several classes of antidepressants, a substantial percentage of patients are unresponsive to these medications. A better understanding of the neurobiology of depression and the mechanisms underlying antidepressant response is thus critically needed. We previously reported that mice lacking CREB-regulated transcription coactivator 1 (CRTC1) exhibit a depressive-like phenotype and a blunted antidepressant response to the selective serotonin reuptake inhibitor fluoxetine. In this study, we similarly show that Crtc1(-/-) mice are resistant to the antidepressant effect of chronic desipramine in a behavioral despair paradigm. Supporting the blunted response to this tricyclic antidepressant, we found that desipramine does not significantly increase the expression of Bdnf and Nr4a1-3 in the hippocampus and prefrontal cortex of Crtc1(-/-) mice. Epigenetic regulation of neuroplasticity gene expression has been associated with depression and antidepressant response, and histone deacetylase (HDAC) inhibitors have been shown to have antidepressant-like properties. Here, we show that unlike conventional antidepressants, chronic systemic administration of the HDAC inhibitor SAHA partially rescues the depressive-like behavior of Crtc1(-/-) mice. This behavioral effect is accompanied by an increased expression of Bdnf, but not Nr4a1-3, in the prefrontal cortex of these mice, suggesting that this epigenetic intervention restores the expression of a subset of genes by acting downstream of CRTC1. These findings suggest that CRTC1 alterations may be associated with treatment-resistant depression, and support the interesting possibility that targeting HDACs may be a useful therapeutic strategy in antidepressant development.


Assuntos
Antidepressivos/farmacologia , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Fatores de Transcrição/deficiência , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Resistente a Tratamento/metabolismo , Desipramina/farmacologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Fatores de Transcrição/genética , Vorinostat
9.
J Affect Disord ; 198: 43-9, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27002284

RESUMO

BACKGROUND: Psychiatric disorders have been hypothesized to share common etiological pathways with obesity, suggesting related neurobiological bases. We aimed to examine whether CRTC1 polymorphisms were associated with major depressive disorder (MDD) and to test the association of these polymorphisms with obesity markers in several large case-control samples with MDD. METHODS: The association between CRTC1 polymorphisms and MDD was investigated in three case-control samples with MDD (PsyCoLaus n1=3,362, Radiant n2=3,148 and NESDA/NTR n3=4,663). The effect of CRTC1 polymorphisms on obesity markers was then explored. RESULTS: CRTC1 polymorphisms were not associated with MDD in the three samples. CRTC1 rs6510997C>T was significantly associated with fat mass in the PsyCoLaus study. In fact, a protective effect of this polymorphism was found in MDD cases (n=1,434, ß=-1.32%, 95% CI -2.07 to -0.57, p<0.001), but not in controls. In the Radiant study, CRTC1 polymorphisms were associated with BMI, exclusively in individuals with MDD (n=2,138, ß=-0.75kg/m(2), 95% CI -1.30 to -0.21, p=0.007), while no association with BMI was found in the NESDA/NTR study. LIMITATIONS: Estimated fat mass using bioimpedance that capture more accurately adiposity was only present in the PsyCoLaus sample. CONCLUSIONS: CRTC1 polymorphisms seem to play a role with obesity markers in individuals with MDD rather than non-depressive individuals. Therefore, the weak association previously reported in the population-based samples was driven by cases diagnosed with lifetime MDD. However, CRTC1 seems not to be implicated directly in the development of psychiatric diseases.


Assuntos
Tecido Adiposo , Índice de Massa Corporal , Transtorno Depressivo Maior/complicações , Transtorno Depressivo Maior/genética , Obesidade/complicações , Obesidade/genética , Fatores de Transcrição/genética , Adulto , Biomarcadores , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/fisiopatologia , Polimorfismo de Nucleotídeo Único/genética
10.
Cell Signal ; 27(11): 2252-60, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26247811

RESUMO

CREB-binding protein (CBP) and p300 are transcriptional coactivators involved in numerous biological processes that affect cell growth, transformation, differentiation, and development. In this study, we provide evidence of the involvement of homeodomain-interacting protein kinase 2 (HIPK2) in the regulation of CBP activity. We show that HIPK2 interacts with and phosphorylates several regions of CBP. We demonstrate that serines 2361, 2363, 2371, 2376, and 2381 are responsible for the HIPK2-induced mobility shift of CBP C-terminal activation domain. Moreover, we show that HIPK2 strongly potentiates the transcriptional activity of CBP. However, our data suggest that HIPK2 activates CBP mainly by counteracting the repressive action of cell cycle regulatory domain 1 (CRD1), located between amino acids 977 and 1076, independently of CBP phosphorylation. Our findings thus highlight a complex regulation of CBP activity by HIPK2, which might be relevant for the control of specific sets of target genes involved in cellular proliferation, differentiation and apoptosis.


Assuntos
Proteína de Ligação a CREB/metabolismo , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Transativadores/genética , Ativação Transcricional/genética , Apoptose/genética , Proteína de Ligação a CREB/genética , Ciclo Celular/genética , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Proteína p300 Associada a E1A , Células HEK293 , Humanos , Fosforilação , Ligação Proteica/genética , Estrutura Terciária de Proteína , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA