Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Metabolites ; 13(11)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37999256

RESUMO

Proton transporters play a key role in maintaining the acidic tumor microenvironment; hence, their inhibition has been proposed as a new therapeutic treatment, although few methods can accurately assess their effect in vivo. In this study, we investigated whether MRI-CEST (Magnetic Resonance Imaging-Chemical Exchange Saturation Transfer) tumor pH imaging can be a useful tool to evaluate in vivo the therapeutic efficacy of several Proton Pump Inhibitors (PPIs) in breast cancer. Cell viability and extracellular pH assays were carried out in breast cancer cells cultured at physiological pH (7.4) or acid-adapted (pH of 6.5 and 6.8) following the exposure to inhibitors of V-ATPase (Lansoprazole, Esomeprazole) or NHE1 (Amiloride, Cariporide) at several concentrations. Next, triple-negative breast cancer 4T1 tumor-bearing mice were treated with Lansoprazole or Amiloride and MRI-CEST tumor pH imaging was utilized to assess the in vivo efficacy. Only Lansoprazole induced, in addition to breast cancer cell toxicity, a significant inhibition of proton extrusion. A significant reduction in tumor volume, prolonged survival, and increase in extracellular tumor pH after 1 and 2 weeks were observed after Lansoprazole treatment, whereas no significant changes were detected upon Amiloride treatment. Our results suggested that MRI-CEST tumor pH imaging can monitor the therapeutic efficacy of PPIs in breast cancer murine models.

2.
NMR Biomed ; 36(6): e4715, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35187749

RESUMO

Since the inception of CEST MRI in the 1990s, a number of compounds have been identified as suitable for generating contrast, including paramagnetic lanthanide complexes, hyperpolarized atom cages and, most interesting, diamagnetic compounds. In the past two decades, there has been a major emphasis in this field on the identification and application of diamagnetic compounds that have suitable biosafety profiles for usage in medical applications. Even in the past five years there has been a tremendous growth in their numbers, with more and more emphasis being placed on finding those that can be ultimately used for patient studies on clinical 3 T scanners. At this point, a number of endogenous compounds present in tissue have been identified, and also natural and synthetic organic compounds that can be administered to highlight pathology via CEST imaging. Here we will provide a very extensive snapshot of the types of diamagnetic compound that can generate CEST MRI contrast, together with guidance on their utility on typical preclinical and clinical scanners and a review of the applications that might benefit the most from this new technology.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos
3.
Methods Mol Biol ; 2614: 287-311, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587132

RESUMO

Magnetic resonance imaging (MRI) is a noninvasive imaging technique that allows for physiological and functional studies of the tumor microenvironment. Within MRI, the emerging field of chemical exchange saturation transfer (CEST) has been largely exploited for assessing a salient feature of all solid tumors, extracellular acidosis. Iopamidol-based tumor pH imaging has been demonstrated to provide accurate and high spatial resolution extracellular tumor pH maps to elucidate tumor aggressiveness and for assessing response to therapy, with a high potential for clinical translation. Here, we describe the overall setup and steps for measuring tumor extracellular pH of tumor models in mice by exploiting MRI-CEST pH imaging with a preclinical MRI scanner following the administration of iopamidol. We address issues of pH calibration curve setup, animal handling, pH-responsive contrast agent injection, acquisition protocol, and image processing for accurate quantification and visualization of tumor acidosis.


Assuntos
Acidose , Neoplasias , Camundongos , Animais , Iopamidol , Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Meios de Contraste , Acidose/patologia , Microambiente Tumoral
4.
Cancers (Basel) ; 14(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36230838

RESUMO

The tumor microenvironment acidification confers treatment resistance; therefore, the interference with pH regulating systems is considered a new therapeutic strategy. In this study, two human prostate cancer cell lines, PC3 and LNCaP, have been treated in vitro with proton pump inhibitors (PPIs), namely Lansoprazole, Esomeprazole (V-ATPases-inhibitors), Cariporide, and Amiloride (NHE1-inhibitors). The cell viability and pH were assessed at several drug concentrations either at normoxic or hypoxic conditions. Since Esomeprazole showed the highest toxicity towards the PC3 cancer cells compared to LNCaP ones, athymic nude mice bearing subcutaneous or orthotopic PC3 tumors were treated with Esomeprazole (dose: 2.5 mg/kg body weight) for a period of three weeks-and tumor growth was monitored. MRI-CEST tumor pH imaging with Iopamidol was performed upon treatment at 3 h, 1 week (in combination with FDG-PET), and after 2 weeks for evaluating acute, early, and late responses. Although acute tumor pH changes were observed in vivo, long-term studies on both PC3 prostate cancer models did not provide any significant change in tumor acidosis or tumor growth. In conclusion, this work shows that MRI-CEST tumor pH imaging is a valuable tool for assessing the in vivo treatment response to PPIs.

5.
ChemMedChem ; 17(24): e202200508, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36198652

RESUMO

A stable and inert amphiphilic Mn(II) complex based on a bisamide derivative of 1,4-DO2A (DO2A=tetraazacyclododecane-1,4-diacetic acid) was synthesized and its 1 H NMR relaxometric behavior was investigated as a function of the magnetic field strength, pH and temperature. The interaction with human serum albumin (HSA) was also studied via relaxometry showing a good relaxivity enhancement at low field (at 1T and 298 K the relaxivity increases from 4.5 mM-1 s-1 of the Mn(II)-complex to 14.0 mM-1 s-1 of the complex-HSA supramolecular adduct). In vivo biodistribution and MRI studies highlighted a rapid and mixed renal/liver elimination without spleen accumulation from healthy mice and good contrast enhancing properties in a breast tumor murine model. A comparison with a clinically approved Gd(III) agent (GdBOPTA, Multihance®) underlined that the proposed Mn(II) contrast agent gave comparable tumor contrast enhancement up to 3 hours post-injection.


Assuntos
Meios de Contraste , Neoplasias , Humanos , Camundongos , Animais , Meios de Contraste/química , Distribuição Tecidual , Manganês/química , Imageamento por Ressonância Magnética , Albumina Sérica Humana
6.
Metabolites ; 13(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36676972

RESUMO

Novel anticancer treatments target the pH regulating system that plays a major role in tumor progression by creating an acidic microenvironment, although few studies have addressed their effect on tumor acidosis. In this study, we investigated in vivo several proton pump inhibitors (PPIs) targeting NHE-1 (Amiloride and Cariporide) and V-ATPase (Esomeprazole and Lansoprazole) proton transporters in the DU145 androgen-insensitive human prostate cancer model. In cellulo results showed that DU145 are sensitive, with decreasing efficacy, to Amiloride, Esomeprazole and Lansoprazole, with marked cell toxicity both in normoxia and in hypoxia, with almost any change in pH. In vivo studies were performed upon administration of Esomeprazole to assess both the acute and chronic effects, and Iopamidol-based tumor pH imaging was performed to evaluate tumor acidosis. Although statistically significant tumor pH changes were observed a few hours after Esomeprazole administration in both the acute study and up to one week of treatment in the chronic study, longer treatment resulted in a lack of changes in tumor acidosis, which was associated to similar tumor growth curves between treated and control groups in both the subcutaneous and orthotopic models. Overall, this study highlights MRI-CEST tumor pH imaging as a valid approach to monitoring treatment response to PPIs.

7.
Front Cell Dev Biol ; 9: 671838, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447744

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive type of brain tumor in adulthood. Epigenetic mechanisms are known to play a key role in GBM although the involvement of histone methyltransferase KMT5B and its mark H4K20me2 has remained largely unexplored. The present study shows that DNA hypermethylation and loss of DNA hydroxymethylation is associated with KMT5B downregulation and genome-wide reduction of H4K20me2 levels in a set of human GBM samples and cell lines as compared with non-tumoral specimens. Ectopic overexpression of KMT5B induced tumor suppressor-like features in vitro and in a mouse tumor xenograft model, as well as changes in the expression of several glioblastoma-related genes. H4K20me2 enrichment was found immediately upstream of the promoter regions of a subset of deregulated genes, thus suggesting a possible role for KMT5B in GBM through the epigenetic modulation of key target cancer genes.

8.
Front Oncol ; 10: 161, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32133295

RESUMO

Altered metabolism is considered a core hallmark of cancer. By monitoring in vivo metabolites changes or characterizing the tumor microenvironment, non-invasive imaging approaches play a fundamental role in elucidating several aspects of tumor biology. Within the magnetic resonance imaging (MRI) modality, the chemical exchange saturation transfer (CEST) approach has emerged as a new technique that provides high spatial resolution and sensitivity for in vivo imaging of tumor metabolism and acidosis. This mini-review describes CEST-based methods to non-invasively investigate tumor metabolism and important metabolites involved, such as glucose and lactate, as well as measurement of tumor acidosis. Approaches that have been exploited to assess response to anticancer therapies will also be reported for each specific technique.

9.
Int J Cancer ; 146(2): 373-387, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31211412

RESUMO

Loss of 5-hydroxymethylcytosine (5hmC) has been associated with mutations of the ten-eleven translocation (TET) enzymes in several types of cancer. However, tumors with wild-type TET genes can also display low 5hmC levels, suggesting that other mechanisms involved in gene regulation might be implicated in the decline of this epigenetic mark. Here we show that DNA hypermethylation and loss of DNA hydroxymethylation, as well as a marked reduction of activating histone marks in the TET3 gene, impair TET3 expression and lead to a genome-wide reduction in 5hmC levels in glioma samples and cancer cell lines. Epigenetic drugs increased expression of TET3 in glioblastoma cells and ectopic overexpression of TET3 impaired in vitro cell growth and markedly reduced tumor formation in immunodeficient mice models. TET3 overexpression partially restored the genome-wide patterns of 5hmC characteristic of control brain samples in glioblastoma cell lines, while elevated TET3 mRNA levels were correlated with better prognosis in glioma samples. Our results suggest that epigenetic repression of TET3 might promote glioblastoma tumorigenesis through the genome-wide alteration of 5hmC.


Assuntos
Neoplasias Encefálicas/genética , Carcinogênese/genética , Dioxigenases/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Biópsia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Metilação de DNA , Regulação para Baixo , Glioblastoma/mortalidade , Glioblastoma/patologia , Código das Histonas/genética , Humanos , Camundongos , Prognóstico , RNA Mensageiro/metabolismo , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Nucleic Acids Res ; 47(10): 5016-5037, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30923829

RESUMO

Histone H4 acetylation at Lysine 16 (H4K16ac) is a key epigenetic mark involved in gene regulation, DNA repair and chromatin remodeling, and though it is known to be essential for embryonic development, its role during adult life is still poorly understood. Here we show that this lysine is massively hyperacetylated in peripheral neutrophils. Genome-wide mapping of H4K16ac in terminally differentiated blood cells, along with functional experiments, supported a role for this histone post-translational modification in the regulation of cell differentiation and apoptosis in the hematopoietic system. Furthermore, in neutrophils, H4K16ac was enriched at specific DNA repeats. These DNA regions presented an accessible chromatin conformation and were associated with the cleavage sites that generate the 50 kb DNA fragments during the first stages of programmed cell death. Our results thus suggest that H4K16ac plays a dual role in myeloid cells as it not only regulates differentiation and apoptosis, but it also exhibits a non-canonical structural role in poising chromatin for cleavage at an early stage of neutrophil cell death.


Assuntos
Apoptose , Diferenciação Celular , Cromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Células Mieloides/metabolismo , Acetilação , Animais , Células Cultivadas , Cromatina/genética , Epigênese Genética , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/citologia , Processamento de Proteína Pós-Traducional , Transcrição Gênica
12.
Oncotarget ; 9(40): 25922-25934, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29899831

RESUMO

Ten-eleven translocation (TET) enzymes are frequently deregulated in cancer, but the underlying molecular mechanisms are still poorly understood. Here we report that TET2 shows frequent epigenetic alterations in human glioblastoma including DNA hypermethylation and hypo-hydroxymethylation, as well as loss of histone acetylation. Ectopic overexpression of TET2 regulated neural differentiation in glioblastoma cell lines and impaired tumor growth. Our results suggest that epigenetic dysregulation of TET2 plays a role in human glioblastoma.

13.
Hum Mol Genet ; 27(17): 3046-3059, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29878202

RESUMO

Aberrant DNA hypermethylation is a hallmark of cancer although the underlying molecular mechanisms are still poorly understood. To study the possible role of 5-hydroxymethylcytosine (5hmC) in this process we analyzed the global and locus-specific genome-wide levels of 5hmC and 5-methylcytosine (5mC) in human primary samples from 12 non-tumoral brains and 53 gliomas. We found that the levels of 5hmC identified in non-tumoral samples were significantly reduced in gliomas. Strikingly, hypo-hydroxymethylation at 4627 (9.3%) CpG sites was associated with aberrant DNA hypermethylation and was strongly enriched in CpG island shores. The DNA regions containing these CpG sites were enriched in H3K4me2 and presented a different genuine chromatin signature to that characteristic of the genes classically aberrantly hypermethylated in cancer. As this 5mC gain is inversely correlated with loss of 5hmC and has not been identified with classical sodium bisulfite-based technologies, we conclude that our data identifies a novel 5hmC-dependent type of aberrant DNA hypermethylation in glioma.


Assuntos
5-Metilcitosina/análogos & derivados , Biomarcadores Tumorais/genética , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Glioma/patologia , 5-Metilcitosina/metabolismo , Estudos de Casos e Controles , Ilhas de CpG , Glioma/genética , Glioma/metabolismo , Humanos
14.
J Med Case Rep ; 12(1): 103, 2018 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-29679984

RESUMO

BACKGROUND: Propionic acidemia is a rare autosomal recessive inherited metabolic disorder that can inhibit the synthesis of N-acetylglutamate, the obligatory activator in urea synthesis, leading to hyperammonemia. N-carbamylglutamate ameliorates hyperammonemia in decompensated propionic acidemia. The effects of long-term continuous N-acetylglutamate administration in such patients are unknown. We report our clinical experience with continuous administration of N-acetylglutamate for 6 years in a patient with propionic acidemia frequently presenting with hyperammonemia. CASE PRESENTATION: A male Caucasian patient with frequently decompensated propionic acidemia and hyperammonemia was admitted 78 times for acute attacks during the first 9 years of his life. Continuous daily treatment with oral N-carbamylglutamate 100 mg/kg (50 mg/kg after 6 months) was initiated. During 6 years of treatment, he had a significant decrease in his mean plasma ammonia levels (75.7 µmol/L vs. 140.3 µmol/L before N-carbamylglutamate therapy, p < 0.005 [normal range 50-80 µmol/L]) and fewer acute episodes (two in 6 years). CONCLUSION: Our results suggest a benefit of N-acetylglutamate administration outside the emergency setting. If this observation is confirmed, future studies should aim to optimize the dosage and explore effects of the dosage requirements on other drugs and on protein tolerance.


Assuntos
Glutamatos/administração & dosagem , Hiperamonemia/sangue , Acidemia Propiônica/tratamento farmacológico , Administração Oral , Adolescente , Aminoácido N-Acetiltransferase/sangue , Aminoácido N-Acetiltransferase/efeitos dos fármacos , Biomarcadores/sangue , Doença Crônica , Deficiências do Desenvolvimento/complicações , Relação Dose-Resposta a Droga , Humanos , Hiperamonemia/etiologia , Masculino , Acidemia Propiônica/dietoterapia , Acidemia Propiônica/fisiopatologia , Distúrbios Congênitos do Ciclo da Ureia/sangue
15.
J Transl Med ; 14(1): 207, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27393146

RESUMO

BACKGROUND: Age-associated changes in genomic DNA methylation have been primarily attributed to 5-methylcytosine (5mC). However, the recent discovery of 5-hydroxymethylcytosine (5hmC) suggests that this epigenetic mark might also play a role in the process. METHODS: Here, we analyzed the genome-wide profile of 5hmc in mesenchymal stem cells (MSCs) obtained from bone-marrow donors, aged 2-89 years. RESULTS: We identified 10,685 frequently hydroxymethylated CpG sites in MSCs that were, as in other cell types, significantly associated with low density CpG regions, introns, the histone posttranslational modification H3k4me1 and enhancers. Study of the age-associated changes to 5hmC identified 785 hyper- and 846 hypo-hydroxymethylated CpG sites in the MSCs obtained from older individuals. CONCLUSIONS: DNA hyper-hydroxymethylation in the advanced-age group was associated with loss of 5mC, which suggests that, at specific CpG sites, this epigenetic modification might play a role in DNA methylation changes during lifetime. Since bone-marrow MSCs have many clinical applications, and the fact that the epigenomic alterations in this cell type associated with aging identified in this study could have associated functional effects, the age of donors should be taken into account in clinical settings.


Assuntos
5-Metilcitosina/análogos & derivados , Envelhecimento/genética , Células da Medula Óssea/citologia , Metilação de DNA/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , 5-Metilcitosina/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Cromatina/metabolismo , Ilhas de CpG/genética , Genoma Humano , Genômica , Humanos , Pessoa de Meia-Idade , Adulto Jovem
16.
Genome Res ; 25(1): 27-40, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25271306

RESUMO

In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type-independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors.


Assuntos
Envelhecimento/genética , Metilação de DNA , DNA/genética , Células-Tronco/citologia , Adolescente , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Células Cultivadas , Criança , Pré-Escolar , Cromatina/genética , Epigênese Genética , Histonas/genética , Humanos , Análise em Microsséries , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Análise de Sequência de DNA , Gêmeos Monozigóticos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA