Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Psychiatry ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366114

RESUMO

Glutamatergic neurotransmission system dysregulation may play an important role in the pathophysiology of Alzheimer's disease (AD). However, reported results on glutamatergic components across brain regions are contradictory. Here, we conducted a systematic review with meta-analysis to examine whether there are consistent glutamatergic abnormalities in the human AD brain. We searched PubMed and Web of Science (database origin-October 2023) reports evaluating glutamate, glutamine, glutaminase, glutamine synthetase, glutamate reuptake, aspartate, excitatory amino acid transporters, vesicular glutamate transporters, glycine, D-serine, metabotropic and ionotropic glutamate receptors in the AD human brain (PROSPERO #CDRD42022299518). The studies were synthesized by outcome and brain region. We included cortical regions, the whole brain (cortical and subcortical regions combined), the entorhinal cortex and the hippocampus. Pooled effect sizes were determined with standardized mean differences (SMD), random effects adjusted by false discovery rate, and heterogeneity was examined by I2 statistics. The search retrieved 6 936 articles, 63 meeting the inclusion criteria (N = 709CN/786AD; mean age 75/79). We showed that the brain of AD individuals presents decreased glutamate (SMD = -0.82; I2 = 74.54%; P < 0.001) and aspartate levels (SMD = -0.64; I2 = 89.71%; P = 0.006), and reuptake (SMD = -0.75; I2 = 83.04%; P < 0.001. We also found reduced α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPAR)-GluA2/3 levels (SMD = -0.63; I2 = 95.55%; P = 0.046), hypofunctional N-methyl-D-aspartate receptor (NMDAR) (SMD = -0.60; I2 = 91.47%; P < 0.001) and selective reduction of NMDAR-GluN2B subunit levels (SMD = -1.07; I2 = 41.81%; P < 0.001). Regional differences include lower glutamate levels in cortical areas and aspartate levels in cortical areas and in the hippocampus, reduced glutamate reuptake, reduced AMPAR-GluA2/3 in the entorhinal cortex, hypofunction of NMDAR in cortical areas, and a decrease in NMDAR-GluN2B subunit levels in the entorhinal cortex and hippocampus. Other parameters studied were not altered. Our findings show depletion of the glutamatergic system and emphasize the importance of understanding glutamate-mediated neurotoxicity in AD. This study has implications for the development of therapies and biomarkers in AD.

2.
iScience ; 27(1): 108671, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38292167

RESUMO

Alzheimer's disease (AD) is a multifactorial pathology, with most cases having a sporadic origin. Recently, knock-in (KI) mouse models, such as the novel humanized amyloid-ß (hAß)-KI, have been developed to better resemble sporadic human AD. METHODS: Here, we compared hippocampal publicly available transcriptomic profiles of transgenic (5xFAD and APP/PS1) and KI (hAß-KI) mouse models with early- (EOAD) and late- (LOAD) onset AD patients. RESULTS: The three mouse models presented more Gene Ontology biological processes terms and enriched signaling pathways in common with LOAD than with EOAD individuals. Experimental validation of consistently dysregulated genes revealed five altered in mice (SLC11A1, S100A6, CD14, CD33, and C1QB) and three in humans (S100A6, SLC11A1, and KCNK). Finally, we identified 17 transcription factors potentially acting as master regulators of AD. CONCLUSION: Our cross-species analyses revealed that the three mouse models presented a remarkable similarity to LOAD, with the hAß-KI being the more specific one.

3.
Mol Psychiatry ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419974

RESUMO

The γ-aminobutyric acid (GABA)ergic system is the primary inhibitory neurotransmission system in the mammalian brain. Its dysregulation has been shown in multiple brain conditions, but in Alzheimer's disease (AD) studies have provided contradictory results. Here, we conducted a systematic review with meta-analysis to investigate whether the GABAergic system is altered in AD patients compared to healthy controls (HC), following the PRISMA 2020 Statement. We searched PubMed and Web of Science from database inception to March 18th, 2023 for studies reporting GABA, glutamate decarboxylase (GAD) 65/67, GABAA, GABAB, and GABAC receptors, GABA transporters (GAT) 1-3 and vesicular GAT in the brain, and GABA levels in the cerebrospinal fluid (CSF) and blood. Heterogeneity was estimated using the I2 index, and the risk of bias was assessed with an adapted questionnaire from the Joanna Briggs Institute Critical Appraisal Tools. The search identified 3631 articles, and 48 met the final inclusion criteria (518 HC, mean age 72.2, and 603 AD patients, mean age 75.6). Random-effects meta-analysis [standardized mean difference (SMD)] revealed that AD patients presented lower GABA levels in the brain (SMD = -0.48 [95% CI = -0.7, -0.27], adjusted p value (adj. p) < 0.001) and in the CSF (-0.41 [-0.72, -0.09], adj. p = 0.042), but not in the blood (-0.63 [-1.35, 0.1], adj. p = 0.176). In addition, GAD65/67 (-0.67 [-1.15, -0.2], adj. p = 0.006), GABAA receptor (-0.51 [-0.7, -0.33], adj. p < 0.001), and GABA transporters (-0.51 [-0.92, -0.09], adj. p = 0.016) were lower in the AD brain. Here, we showed a global reduction of GABAergic system components in the brain and lower GABA levels in the CSF of AD patients. Our findings suggest the GABAergic system is vulnerable to AD pathology and should be considered a potential target for developing pharmacological strategies and novel AD biomarkers.

4.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35456893

RESUMO

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by several alterations, including disorganized brain cytoarchitecture and excitatory/inhibitory (E/I) imbalance. We aimed to analyze aspects associated with the inhibitory components in ASD, using bioinformatics to develop notions about embryonic life and tissue analysis for postnatal life. We analyzed microarray and RNAseq datasets of embryos from different ASD models, demonstrating that regions involved in neuronal development are affected. We evaluated the effect of prenatal treatment with resveratrol (RSV) on the neuronal organization and quantity of parvalbumin-positive (PV+), somatostatin-positive (SOM+), and calbindin-positive (CB+) GABAergic interneurons, besides the levels of synaptic proteins and GABA receptors in the medial prefrontal cortex (mPFC) and hippocampus (HC) of the ASD model induced by valproic acid (VPA). VPA increased the total number of neurons in the mPFC, while it reduced the number of SOM+ neurons, as well as the proportion of SOM+, PV+, and CB+ neurons (subregion-specific manner), with preventive effects of RSV. In summary, metabolic alterations or gene expression impairments could be induced by VPA, leading to extensive damage in the late developmental stages. By contrast, due to its antioxidant, neuroprotective, and opposite action on histone properties, RSV may avoid damages induced by VPA.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Efeitos Tardios da Exposição Pré-Natal , Resveratrol , Ácido Valproico , Animais , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/genética , Modelos Animais de Doenças , Feminino , Interneurônios/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Resveratrol/uso terapêutico , Ácido Valproico/efeitos adversos
5.
Behav Brain Res ; 418: 113629, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34656692

RESUMO

Mice homozygous for the nude mutation (Foxn1nu) are hairless and exhibit congenital dysgenesis of the thymic epithelium, resulting in a primary immunodeficiency of mature T-cells, and have been used for decades in research with tumour grafts. Early studies have already demonstrated social behaviour impairments and central nervous system (CNS) alterations in these animals, but did not address the complex interplay between CNS, immune system and behavioural alterations. Here we investigate the impact of T-cell immunodeficiency on behaviours relevant to the study of neurodevelopmental and neuropsychiatric disorders. Moreover, we aimed to characterise in a multidisciplinary manner the alterations related to those findings, through evaluation of the excitatory/inhibitory synaptic proteins, cytokines expression and biological spectrum signature of different biomolecules in nude mice CNS. We demonstrate that BALB/c nude mice display sociability impairments, a complex pattern of repetitive behaviours and higher sensitivity to thermal nociception. These animals also have a reduced IFN-γ gene expression in the prefrontal cortex and an absence of T-cells in meningeal tissue, both known modulators of social behaviour. Furthermore, excitatory synaptic protein PSD-95 immunoreactivity was also reduced in the prefrontal cortex, suggesting an intricate involvement of social behaviour related mechanisms. Lastly, employing biospectroscopy analysis, we have demonstrated that BALB/c nude mice have a different CNS spectrochemical signature compared to their heterozygous littermates. Altogether, our results show a comprehensive behavioural analysis of BALB/c nude mice and potential neuroimmunological influences involved with the observed alterations.


Assuntos
Transtornos Mentais/imunologia , Mutação/genética , Transtornos do Neurodesenvolvimento/imunologia , Linfócitos T/imunologia , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
6.
Neuropharmacology ; 167: 107930, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31904357

RESUMO

Autism spectrum disorder (ASD) is characterized by deficits in communication and social interaction, restricted interests, and stereotyped behavior. Environmental factors, such as prenatal exposure to valproic acid (VPA), may contribute to the increased risk of ASD. Since disturbed functioning of the purinergic signaling system has been associated with the onset of ASD and used as a potential therapeutic target for ASD in both clinical and preclinical studies, we analyzed the effects of suramin, a non-selective purinergic antagonist, on behavioral, molecular and immunological in an animal model of autism induced by prenatal exposure to VPA. Treatment with suramin (20 mg/kg, intraperitoneal) restored sociability in the three-chamber apparatus and decreased anxiety measured by elevated plus maze apparatus, but had no impact on decreased reciprocal social interactions or higher nociceptive threshold in VPA rats. Suramin treatment did not affect VPA-induced upregulation of P2X4 and P2Y2 receptor expression in the hippocampus, and P2X4 receptor expression in the medial prefrontal cortex, but normalized an increased level of interleukin 6 (IL-6). Our results suggest an important role of purinergic signaling modulation in behavioral, molecular, and immunological aberrations described in VPA model, and indicate that the purinergic signaling system might be a potential target for pharmacotherapy in preclinical studies of ASD.


Assuntos
Transtorno Autístico/tratamento farmacológico , Modelos Animais de Doenças , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Antagonistas Purinérgicos/administração & dosagem , Receptores Purinérgicos , Ácido Valproico/toxicidade , Animais , Anticonvulsivantes/toxicidade , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Feminino , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Receptores Purinérgicos/metabolismo , Suramina/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA