Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(6): 1389-1398, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38227013

RESUMO

The chemical composition of the soluble fraction of atmospheric particulate matter (PM) and how these components can combine with each other to form different species affect the chemistry of the aqueous phase dispersed in the atmosphere: raindrops, clouds, fog, and ice particles. The study was focused on the analysis of the soluble fraction of Arctic PM10 samples collected at Ny-Ålesund (Svalbard Islands, Norwegian Arctic) during the year 2012. The concentration values of Na+, K+, NH4+, Ca2+, Mg2+, Mn2+, Cu2+, Zn2+, Fe3+, Al3+, Cl-, NO2-, NO3-, SO42-, PO43-, formate, acetate, malonate, and oxalate in the water-soluble fraction of PM10 were determined by atomic spectroscopy and ion chromatography. Speciation models were applied to define the major species that would occur in aqueous solution as a function of pH (2-10). The model highlights that (i) the main cations such as Na+, K+, Mg2+, and Ca2+ occur in the form of aquoions in the whole investigated pH range; (ii) Cu2+, Zn2+, and, in particular, Fe3+ and Al3+ are mostly present in their hydrolytic forms; and (iii) Al3+, Fe3+, and Cu2+ form solid hydrolytic species that precipitate at pH values slightly higher than neutrality. These latter metals show interesting interactions with oxalate and sulfate ions, too. The speciation models were also calculated considering the seasonal variability of the concentration of the components and at higher concentration levels than those found in water PM extracts, to better simulate concentrations actually found in the atmospheric aqueous phase. The results highlight the role of oxalate as the main organic ligand in solution.

2.
Environ Sci Technol ; 57(23): 8785-8795, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37269319

RESUMO

The photodegradation of vanillin, as a proxy of methoxyphenols emitted by biomass burning, was investigated in artificial snow at 243 K and in liquid water at room temperature. Nitrite (NO2-) was used as a photosensitizer of reactive oxygen and nitrogen species under UVA light, because of its key photochemical role in snowpacks and atmospheric ice/waters. In snow and in the absence of NO2-, slow direct photolysis of vanillin was observed due to back-reactions taking place in the quasi-liquid layer at the ice-grain surface. The addition of NO2- made the photodegradation of vanillin faster, because of the important contribution of photoproduced reactive nitrogen species in vanillin phototransformation. These species triggered both nitration and oligomerization of vanillin in irradiated snow, as the identified vanillin by-products showed. Conversely, in liquid water, direct photolysis was the main photodegradation pathway of vanillin, even in the presence of NO2-, which had negligible effects on vanillin photodegradation. The results outline the different role of iced and liquid water in the photochemical fate of vanillin in different environmental compartments.


Assuntos
Nitritos , Poluentes Químicos da Água , Fotólise , Gelo , Neve , Dióxido de Nitrogênio , Água , Poluentes Químicos da Água/análise
3.
Water Res ; 241: 120153, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37290193

RESUMO

Chromophoric dissolved organic matter (CDOM) plays key role as photosensitizer in sunlit surface-water environments, and it is deeply involved in the photodegradation of contaminants. It has recently been shown that sunlight absorption by CDOM can be conveniently approximated based on its monochromatic absorption at 560 nm. Here we show that such an approximation allows for the assessment of CDOM photoreactions on a wide global scale and, particularly, in the latitude belt between 60°S and 60°N. Global lake databases are currently incomplete as far as water chemistry is concerned, but estimates of the content of organic matter are available. With such data it is possible to assess global steady-state concentrations of CDOM triplet states (3CDOM*), which are predicted to reach particularly high values at Nordic latitudes during summer, due to a combination of high sunlight irradiance and elevated content of organic matter. For the first time to our knowledge, we are able to model an indirect photochemistry process in inland waters around the globe. Implications are discussed for the phototransformation of a contaminant that is mainly degraded by reaction with 3CDOM* (clofibric acid, lipid regulator metabolite), and for the formation of known products on a wide geographic scale.


Assuntos
Lagos , Poluentes Químicos da Água , Matéria Orgânica Dissolvida , Fotoquímica , Poluentes Químicos da Água/química , Água
4.
Sci Total Environ ; 876: 162729, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36907419

RESUMO

Benzoate (Bz-) and acetophenone (AcPh) are aromatic compounds known to be produced by sunlight irradiation of polystyrene aqueous suspensions. Here we show that these molecules could react with •OH (Bz-) and •OH + CO3•- (AcPh) in sunlit natural waters, while other photochemical processes (direct photolysis and reaction with singlet oxygen, or with the excited triplet states of chromophoric dissolved organic matter) are unlikely to be important. Steady-state irradiation experiments were carried out using lamps, and the time evolution of the two substrates was monitored by liquid chromatography. Photodegradation kinetics in environmental waters were assessed by a photochemical model (APEX: Aqueous Photochemistry of Environmentally-occurring Xenobiotics). In the case of AcPh, a competitive process to aqueous-phase photodegradation would be volatilisation followed by reaction with gas-phase •OH. As far as Bz- is concerned, elevated dissolved organic carbon (DOC) levels could be important in protecting this compound from aqueous-phase photodegradation. Limited reactivity of the studied compounds with the dibromide radical (Br2•-, studied by laser flash photolysis) suggests that •OH scavenging by bromide, which yields Br2•-, would be poorly offset by Br2•--induced degradation. Therefore, photodegradation kinetics of Bz- and AcPh should be slower in seawater (containing [Br-] ~ 1 mM) compared to freshwaters. The present findings suggest that photochemistry would play an important role in both formation and degradation of water-soluble organic compounds produced by weathering of plastic particles.

5.
Chemosphere ; 319: 137972, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36716935

RESUMO

Evidence is here provided that irradiation of some lake water samples can trigger the formation of fluorophores with humic-like properties, at the same time increasing water absorbance. This phenomenon is the opposite of photobleaching, which is often observed when natural waters are irradiated. The photoproduced humic-like fluorophores observed here would be of autochthonous rather than allochthonous origin, which marks a difference with the fraction of humic substances that derives from terrestrial sources. Photogeneration of humic-like compounds can be highlighted in water samples where the fluorescence signal of initially occurring humic substances is low, so that their photobleaching is minimised. Samples that are most likely to show photoinduced formation of humic-like fluorophores are in fact characterised by high values of protein-like vs. humic-like contribution ratios to fluorescence, as evidenced by parallel factor (PARAFAC) analysis. Mountain lakes in late summer appear to be suitable candidates to highlight the described phenomenon. In some cases, lake-water irradiation caused a decrease in the spectral slope of the absorbance that, together with increasing absorbance values, is consistent with an increase in molecular mass and aromaticity of organic matter. The absorbance increase triggered by irradiation might play a role in screening biologically harmful UV radiation, in mountain environments that would otherwise be characterised by very clear water that allows for easy transmission of UV light along the water column.


Assuntos
Substâncias Húmicas , Lagos , Lagos/análise , Substâncias Húmicas/análise , Espectrometria de Fluorescência , Água/análise , Peso Molecular , Análise Fatorial
6.
Environ Sci Technol ; 56(22): 15650-15660, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36240489

RESUMO

Partitioning between surface waters and the atmosphere is an important process, influencing the fate and transport of semi-volatile contaminants. In this work, a simple methodology that combines experimental data and modeling was used to investigate the degradation of a semi-volatile pollutant in a two-phase system (surface water + atmosphere). 4-Isobutylacetophenone (IBAP) was chosen as a model contaminant; IBAP is a toxic transformation product of the non-steroidal, anti-inflammatory drug ibuprofen. Here, we show that the atmospheric behavior of IBAP would mainly be characterized by reaction with •OH radicals, while degradation initiated by •NO3 or direct photolysis would be negligible. The present study underlines that the gas-phase reactivity of IBAP with •OH is faster, compared to the likely kinetics of volatilization from aqueous systems. Therefore, it might prove very difficult to detect gas-phase IBAP. Nevertheless, up to 60% of IBAP occurring in a deep and dissolved organic carbon-rich water body might be eliminated via volatilization and subsequent reaction with gas-phase •OH. The present study suggests that the gas-phase chemistry of semi-volatile organic compounds which, like IBAP, initially occur in natural water bodies in contact with the atmosphere is potentially very important in some environmental conditions.


Assuntos
Atmosfera , Ibuprofeno , Atmosfera/química , Fotólise , Volatilização , Anti-Inflamatórios não Esteroides , Água/química
7.
Chemosphere ; 307(Pt 3): 135982, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35964728

RESUMO

Abiotic photochemical reactions are usually very important degradation pathways for biorecalcitrant pollutants in surface freshwaters. Therefore, the assessment of photolytic lifetimes of contaminants helps estimate their impact on aquatic systems. This is commonly carried out by combining irradiation experiments and modelling, where the latter considers mathematical functions with polychromatic parameters, such as sunlight spectra, photolysis quantum yields (when Kasha's rule does not hold), and absorption coefficients. With the polychromatic approach, the photolytic lifetime is calculated by solving several integrals, which requires quite demanding modelling resources. In this work, we applied a recently developed approach, which is based on the equivalent monochromatic wavelength (EMW) approximation, to compute the direct-photolysis lifetimes of a range of >40 pollutants in inland waters. The EMW approximation allowed for easier modelling procedure, at the same time providing very good agreement with the polychromatic system. To further show EMW potentialities, lifetimes of three contaminants were mapped over the Piedmont region (NW Italy), as an example of how easy it becomes to geographically EMW-assess the potential of watercourses, to get photochemically decontaminated from pollutants.


Assuntos
Processos Fotoquímicos , Poluentes Químicos da Água , Água Doce , Cinética , Fotólise , Poluentes Químicos da Água/análise
8.
Chemosphere ; 306: 135502, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35803378

RESUMO

The formation quantum yields of photochemically produced reactive intermediates (PPRIs) by irradiated CDOM (in this study, Suwannee River Natural Organic Matter and Upper Mississippi River Natural Organic Matter) decrease with increasing irradiation wavelength. In particular, the formation quantum yields of the excited triplet states of CDOM (3CDOM*) and of singlet oxygen (1O2) have an exponentially decreasing trend with wavelength. The •OH wavelength trend is different, because more effective •OH production occurs under UVB irradiation than foreseen by a purely exponential function. We show that the parameter-adjustable Weibull function (which adapts to both exponential and some non-exponential trends) is suitable to fit the mentioned quantum yield data, and it is very useful when CDOM irradiation is carried out under polychromatic lamps as done here. Model calculations suggest that, thanks to the ability of CDOM to also absorb visible radiation, and despite its decreasing quantum yield of •OH generation with increasing wavelength, CDOM would be able to trigger •OH photogeneration in deep waters, to a higher extent than UVB-absorbing nitrate or UVB + UVA-absorbing nitrite.


Assuntos
Matéria Orgânica Dissolvida , Rios , Compostos Orgânicos , Oxigênio Singlete , Raios Ultravioleta
9.
Chemosphere ; 303(Pt 2): 134895, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35568219

RESUMO

The fungicide tebuconazole (TBCZ) is expected to undergo negligible direct photolysis in surface freshwaters, but it can be degraded by indirect photochemistry. TBCZ mainly reacts with hydroxyl radicals and, to a lesser extent, with the triplet states of chromophoric dissolved organic matter (3CDOM*). Indirect photochemistry is strongly affected by environmental conditions, and TBCZ lifetimes of about one week are expected in sunlit surface waters under favourable circumstances (shallow waters with low concentrations of dissolved organic carbon, DOC, during summer). In these cases, the time trend would follow pseudo-first order kinetics (mono-exponential decay). Under less favourable conditions, photoinduced degradation would span over a few or several months, and TBCZ phototransformation would depart from an exponential trend because of seasonally changing sunlight irradiance. The TBCZ phototransformation products should be less toxic than their parent compound,thus photodegradation has potential to decrease the environmental impact of TBCZ. Hydroxylation is a major TBCZ transformation route, due to either OH attack, or one-electron oxidation sensitised by 3CDOM*, followed by reaction of the oxidised transient with oxygen and water.


Assuntos
Fungicidas Industriais , Poluentes Químicos da Água , Água Doce/química , Cinética , Processos Fotoquímicos , Fotólise , Luz Solar , Triazóis , Poluentes Químicos da Água/análise
10.
Water Res ; 209: 117867, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34864345

RESUMO

The carbonate radical CO3•- and the excited triplet states of chromophoric dissolved organic matter play an important role in the photodegradation of some easily oxidized pollutants in surface waters, such as the aromatic amines. Anilines and sulfadiazine are known to undergo back-reduction processes when their degradation is mediated by the excited triplet states of photosensitizers (triplet sensitization). Back-reduction, which inhibits photodegradation, means that phenols or the antioxidant (mostly phenolic) moieties occurring in the natural dissolved organic matter of surface waters reduce, back to the parent compounds, the radical species derived from the mono-electronic oxidation of anilines and sulfadiazine. Here we show that a similar process takes place as well in the case of substrate oxidation by CO3•-. The carbonate radical was here produced upon oxidation of HCO3-/CO32- by either HO•, generated by nitrate photolysis, or SO4•-, obtained by photolysis of persulfate. Back-reduction was observed in both cases in the presence of phenols, but at different extents as far as the details of reaction kinetics are concerned, and the occurrence of additional reductants might affect the efficacy by which phenols carry out the reduction process. In particular, when the carbonate radicals were produced by NO3- photolysis in the presence of HCO3-/CO32-, the numerical values of [PhOH]1/2 (the phenol concentration that halves the photodegradation rate of the substrate) were 2.19 ± 0.23 µM for aniline, 1.15 ± 0.25 µM for 3-chloroaniline, 1.18 ± 0.26 µM for 4-chloroaniline, and 1.18 ± 0.22 µM for 3,4-dichloroaniline. In contrast, when CO3•- was produced by photolysis of persulfate in the presence of HCO3-/CO32-, the corresponding values were 0.28 ± 0.02 µM for aniline and 0.79 ± 0.10 µM for sulfadiazine. Back-reduction has the potential to significantly inhibit photodegradation by CO3•- and excited triplet states in natural waters, and to comparatively increase the importance of HO•-mediated degradation that is not affected by the same phenomenon.

11.
Environ Sci Process Impacts ; 23(10): 1429-1442, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34490433

RESUMO

Fluorescence spectroscopy is one of the most useful techniques currently available for the characterisation of organic matter in natural water samples, because it combines easy availability of instrumentation, high sensitivity and limited requirements for sample treatment. The main fluorophores that can be found in natural waters are usually proteins (and/or free amino acids) and humic substances (humic and fulvic acids). The identification of these fluorescent compounds in water samples helps to obtain information about, among others, biological activity in the water body, possible transport of organic matter from soil, and the phenomenon of photobleaching that decreases both the absorbance and (usually) the fluorescence of natural organic matter. Interestingly, all these phenomena can be affected by climate change, which could alter to different extents the ratio between aquagenic and pedogenic fluorophores. Several events induced by warming in natural waters (and especially lake water) could enhance algal growth, thereby also enhancing the production of aquagenic organic matter. Intense precipitation events could increase the export of pedogenic material to surface waters, while photobleaching would be enhanced in the epilimnion of lakes when summer stratification becomes longer and more stable because of higher temperatures. Interestingly, photobleaching affects humic substances to a higher extent compared to protein-like material, thus protein fluorescence signals could be more preserved in stratified waters.


Assuntos
Mudança Climática , Substâncias Húmicas , Substâncias Húmicas/análise , Lagos , Espectrometria de Fluorescência
12.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361737

RESUMO

Among the advanced oxidation processes (AOPs), the Fenton reaction has attracted much attention in recent years for the treatment of water and wastewater. This review provides insight into a particular variant of the process, where soluble Fe(II) salts are replaced by zero-valent iron (ZVI), and hydrogen peroxide (H2O2) is replaced by persulfate (S2O82-). Heterogeneous Fenton with ZVI has the advantage of minimizing a major problem found with homogeneous Fenton. Indeed, the precipitation of Fe(III) at pH > 4 interferes with the recycling of Fe species and inhibits oxidation in homogeneous Fenton; in contrast, suspended ZVI as iron source is less sensitive to the increase of pH. Moreover, persulfate favors the production of sulfate radicals (SO4•-) that are more selective towards pollutant degradation, compared to the hydroxyl radicals (•OH) produced in classic, H2O2-based Fenton. Higher selectivity means that degradation of SO4•--reactive contaminants is less affected by interfering agents typically found in wastewater; however, the ability of SO4•- to oxidize H2O/OH- to •OH makes it difficult to obtain conditions where SO4•- is the only reactive species. Research results have shown that ZVI-Fenton with persulfate works best at acidic pH, but it is often possible to get reasonable degradation at pH values that are not too far from neutrality. Moreover, inorganic ions that are very common in water and wastewater (Cl-, HCO3-, CO32-, NO3-, NO2-) can sometimes inhibit degradation by scavenging SO4•- and/or •OH, but in other cases they even enhance the process. Therefore, ZVI-Fenton with persulfate might perform unexpectedly well in some saline waters, although the possible formation of harmful by-products upon oxidation of the anions cannot be ruled out.

13.
Chemosphere ; 263: 127921, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32841874

RESUMO

This work shows the potential of using photochemical modelling to assess the river-water ability to photodegrade agrochemicals on a geographic and temporal scale. The case of flowing water requires different data treatment compared to more stationary water bodies (e.g., lakes), but it could allow for the identification of particularly vulnerable environments. Five pesticides were considered here, and the photodegradation rate followed the order bentazon > isoproturon > dimethomorph âˆ¼ chlortoluron > atrazine. The modelled photodegradation kinetics was particularly fast in the river Po, which receives significant input of agricultural nitrate from groundwater and features higher steady-state [•OH] than most other rivers in the region. The fact that the Po eventually collects all river waters in Piedmont is positive, from the point of view of comprehensive photodegradation of pesticides. However, this paradoxical situation of agricultural pollution (nitrate) helping fight pollution from the same source (pesticides) has two important limitations: (i) when compared to the parent compounds, some intermediates deriving from •OH reactions are either more harmful (N-formyl derivatives of phenylureas), or about as harmful (desethyl atrazine); (ii) banned atrazine is no longer sprayed over fields during the plant growth season, but it reaches surface waters from legacy groundwater inputs. The latter are operational also during winter, when photochemistry is least active. Therefore, photochemistry might not ensure considerable attenuation of atrazine during wintertime. Overall, bentazon would be the safest among the studied pesticides because of fast degradation by direct photolysis, and of low ecotoxicological impact of its phototransformation intermediates.


Assuntos
Água Doce/química , Processos Fotoquímicos , Poluentes Químicos da Água/análise , Agroquímicos , Atrazina , Benzotiadiazinas , Descontaminação , Itália , Cinética , Nitratos , Praguicidas/análise , Fotoquímica , Fotólise , Rios/química , Purificação da Água
14.
Environ Pollut ; 264: 114673, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32388298

RESUMO

Triclosan (TCS) is an antimicrobial compound ubiquitously found in surface waters throughout the world. Although several studies have focused on the photochemical degradation of TCS, there is still limited knowledge about its environmental fate. In this study, we got molecular-level insights into the photochemical degradation of TCS. Significant stable carbon isotope fractionation was observed during photodegradation; different bond-cleavage reaction pathways under different photolytic conditions were characterized, using compound specific isotope analysis (CSIA). Photochemical modeling of TCS photodegradation showed that direct photolysis would be the main transformation pathway if pH > 7, even in presence of dissolved organic matter. Moreover, by use of ultrahigh resolution mass spectrometry, FT-ICR-MS, a broad and complex spectrum of organic by-products (some of which potentially toxic, as assessed by a quantitative structure-activity relationship approach) were identified. A detailed reaction mechanism was developed on the basis of the detected compounds. A possible sequence of steps leading to some of the detected product compounds in aqueous solution is suggested.


Assuntos
Triclosan , Poluentes Químicos da Água , Carbono , Isótopos de Carbono , Cinética , Espectrometria de Massas , Fotólise
16.
Water Res ; 177: 115782, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32294593

RESUMO

We introduced superoxide as potassium superoxide (KO2) to artificial lake water containing dissolved organic matter (DOM) without or with introduced ferric iron complexes (DOM-Fe(III)), and monitored the production rate of hydroxyl radicals as well as changes in the absorption and fluorescence properties of DOM. The introduction of KO2 decreased the absorption by DOM but increased the spectral slope coefficient of DOM more with complexed ferric Fe than without it. The introduction of KO2 increased the fluorescence of humic-like components in DOM without introduced ferric Fe but resulted in the loss of fluorescence in DOM with introduced ferric Fe. A single introduction of 13 µmol L-1 KO2 produced 10 µmol L-1 and 104 µmol L-1 hydroxyl radicals during a week-long experiment without and with the introduced DOM-Fe(III) complexes, respectively. The production rate of hydroxyl radicals decreased exponentially with time but levelled off and continued several days in DOM with introduced ferric Fe. These findings suggest that in the presence of DOM-Fe complexes, superoxide can trigger an autocatalytic Fenton reaction that produces hydroxyl radicals and breaks down DOM.


Assuntos
Radical Hidroxila , Ferro , Água Doce , Superóxidos
17.
Molecules ; 25(2)2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31968645

RESUMO

The abiotic photochemical reactions that take place naturally in sunlit surface waters can degrade many contaminants that pose concern to water bodies for their potentially toxic and long-term effects. This works aims at assessing the ability of European rivers to photoproduce reactive transient intermediates, such as HO• radicals and the excited triplet states of chromophoric dissolved organic matter (3CDOM*), involved in pollutant degradation. A photochemical mapping of the steady-state concentrations of these transients was carried out by means of a suitable modeling tool, in the latitude belt between 40 and 50°N. Such a map allowed for the prediction of the photochemical lifetimes of the phenylurea herbicide isoproturon (mostly undergoing photodegradation upon reaction with HO• and especially 3CDOM*) across different European countries. For some rivers, a more extensive dataset was available spanning the years 1990-2002, which allowed for the computation of the steady-state concentration of the carbonate radicals (CO3•-). With these data, it was possible to assess the time trends of the photochemical half-lives of further contaminants (atrazine, ibuprofen, carbamazepine, and clofibric acid). The calculated lifetimes were in the range of days to weeks, which might or might not allow for efficient depollution depending on the river-water flow velocity.


Assuntos
Rios/química , Poluentes Químicos da Água/análise , Água Doce/análise , Mapeamento Geográfico , Processos Fotoquímicos , Fotólise
18.
Chemosphere ; 246: 125705, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31891848

RESUMO

The photochemical fate of the herbicide bentazone was assessed by lab experiments and modeling tools. Experimental and modeling results showed that bentazone is mainly photodegraded by direct photolysis in natural water samples, even in the presence of dissolved organic matter (DOM) that can act as light-screening agent, photosensitizer and scavenger of reactive species. Even when it was dissolved in natural water samples containing different DOM amounts, the phototransformation kinetics of bentazone was unchanged compared to irradiation runs in ultrapure water. This finding suggests that the DOM and the other components of our samples did not affect the direct photolysis of bentazone by light-absorption competition, at least at the experimental optical path lengths, and did not induce significant indirect photodegradation by producing reactive transient species. Photochemical modeling in a lake-water photoreactivity scenario corroborated the observed experimental results, showing the predominant role of direct photolysis in the overall (direct + indirect) photodegradation of bentazone at different water depths and DOM contents. However, the model predicted a minor but non-negligible contribution of indirect photochemistry (i.e., reactions triggered by HO•, CO3•- and 3CDOM*) to the herbicide degradation. This contribution (especially by 3CDOM*) could become crucial in deep and DOM-rich water bodies. Finally, several photoproducts formed by direct photolysis and HO•-induced photodegradation were identified, which should not be particularly toxic for aquatic organisms and Vibrio fischeri bacteria.


Assuntos
Benzotiadiazinas/química , Processos Fotoquímicos , Poluentes Químicos da Água/química , Água Doce/química , Herbicidas , Cinética , Fotoquímica , Fotólise , Poluentes Químicos da Água/análise
19.
Chemosphere ; 237: 124476, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31404736

RESUMO

The photoreactions sensitised by the excited triplet states of chromophoric dissolved organic matter (3CDOM*) are very important in the photochemical attenuation of emerging contaminants in natural waters. Until quite recently, anthraquinone-2-sulphonate (AQ2S) was the only available CDOM proxy molecule to estimate the contaminant reaction kinetics with 3CDOM*, under steady-state irradiation conditions. Unfortunately, the AQ2S triplet state (3AQ2S*) is considerably more reactive than average 3CDOM*. We have recently developed an alternative protocol based on 4-carboxybenzophenone (CBBP), the triplet state of which (3CBBP*) is less reactive compared to 3AQ2S*. Here we show that in the case of ibuprofen (IBP), paracetamol (APAP) and clofibric acid (CLO), the reaction rate constants with 3CBBP* are more reasonable as 3CDOM* reactivity estimates than those obtained by using AQ2S. In contrast, similar rate constants are measured for the reaction of atrazine (ATZ) with either 3AQ2S* or 3CBBP*. Moreover, the reactivity of ATZ with both 3AQ2S* and 3CBBP* is very similar to that with 3CDOM*, available through a literature estimate. The possibility to validate the ATZ-3CBBP* reactivity estimate against the 3CDOM* data, and to accurately predict the reported IBP and CLO field lifetime, support the suitability of CBBP as CDOM proxy. The replacement of AQ2S with CBBP as proxy molecule does not reverse the qualitative prediction, according to which 3CDOM* would be the main process involved in the photodegradation of the studied contaminants in waters with high dissolved organic carbon (DOC). However, the CBBP-based data prompt for an important reconsideration of the estimated lifetimes at high DOC.


Assuntos
Benzofenonas/química , Poluentes Químicos da Água/química , Antraquinonas , Atrazina , Ibuprofeno , Cinética , Fotólise , Poluentes Químicos da Água/análise
20.
Water Res ; 163: 114894, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31374404

RESUMO

This work presents a kinetic analysis of the exogenous photo-induced disinfection of E. coli in natural waters. Herein, the inactivation of bacteria by light and photo-generated transient species, i.e., hydroxyl radical (HO•), excited triplet states of organic matter (3CDOM*) and singlet oxygen (1O2), was studied. It was found that the exogenous disinfection of E. coli proceeds through a lag time, followed by an exponential phase triggered by photo-generated HO•, 1O2 and 3CDOM*. Also, we report that the concentration increased of transient species (and especially HO•) precursors decreased the lag times of bacteria inactivation. Due to the limitations of the competition kinetics methodology to include the lag phase, an alternative strategy to study the interaction between E. coli and photo-generated transient species was proposed, considering the log-linear pseudo-first order rate constants and lag-times. On this basis and by using APEX software, a full kinetic analysis of exogenous bacterial inactivation, taking into account both lag-time and exponential decay, was developed. This approach provided insights into the conditions that could make exogenous inactivation competitive with the endogenous process for the E. coli inactivation in natural sunlit waters. Hence, this research contributes to the understanding of fundamental kinetic aspects of photoinduced bacterial inactivation, which is the basis for light-assisted processes such as the solar disinfection (SODIS).


Assuntos
Desinfecção , Escherichia coli , Radical Hidroxila , Cinética , Oxigênio Singlete
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA