RESUMO
Type 2 diabetes (T2D) genome-wide association studies (GWASs) often overlook rare variants as a result of previous imputation panels' limitations and scarce whole-genome sequencing (WGS) data. We used TOPMed imputation and WGS to conduct the largest T2D GWAS meta-analysis involving 51,256 cases of T2D and 370,487 controls, targeting variants with a minor allele frequency as low as 5 × 10-5. We identified 12 new variants, including a rare African/African American-enriched enhancer variant near the LEP gene (rs147287548), associated with fourfold increased T2D risk. We also identified a rare missense variant in HNF4A (p.Arg114Trp), associated with eightfold increased T2D risk, previously reported in maturity-onset diabetes of the young with reduced penetrance, but observed here in a T2D GWAS. We further leveraged these data to analyze 1,634 ClinVar variants in 22 genes related to monogenic diabetes, identifying two additional rare variants in HNF1A and GCK associated with fivefold and eightfold increased T2D risk, respectively, the effects of which were modified by the individual's polygenic risk score. For 21% of the variants with conflicting interpretations or uncertain significance in ClinVar, we provided support of being benign based on their lack of association with T2D. Our work provides a framework for using rare variant GWASs to identify large-effect variants and assess variant pathogenicity in monogenic diabetes genes.
RESUMO
INTRODUCTION: Hidradenitis suppurativa (HS) is a prevalent and persistent inflammatory skin disorder, lacking a known cure or effective biomarkers for early diagnosis at present. The genetic determinants of HS have not been fully documented, but it is believed to result from a combination of genetic and environmental factors. METHODS: To identify relevant HS gene variants in sporadic HS patients, this study utilized longitudinal electronic health records (EHRs) and whole-exome sequencing. DNA exome sequencing data from 92,455 participant samples in the MyCode biobank, linked to Geisinger's EHR, were analyzed. This cohort included 1,092 HS cases and 91,363 healthy controls. The MyCode EHR has a median longitudinal follow-up of 15 years per participant, with an average of 87 clinical encounters, 687 laboratory tests, and 7 procedures. RESULTS: There were 1,092 (901 females and 191 males) participants aged 14-89 years (median 47 years) with HS (L73.2), indicating a 1.18% prevalence and accounting for a 4.7:1 female-to-male ratio among the individuals presenting for clinical care. γ-secretase complex, syndromic, and autoinflammatory gene variants were assessed. Potential pathogenic variants were identified among 66 individuals in the HS genes studied. Molecularly, the estimated HS variant prevalence was 1:1,400 in the cohort, 12.3% of variant carriers had HS diagnosis in EHR. CONCLUSIONS: Using longitudinal EHR data, genomic screening identified HS-associated gene variants in a defined group of sporadic HS patients to augment the clinical diagnosis, particularly in cases of ambiguity. Based on this study, the field of skin disorders can benefit from a personalized approach to HS diagnosis using large-scale sequencing.
RESUMO
Coronavirus disease 2019 (COVID-19) and influenza are respiratory illnesses caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses, respectively. Both diseases share symptoms and clinical risk factors1, but the extent to which these conditions have a common genetic etiology is unknown. This is partly because host genetic risk factors are well characterized for COVID-19 but not for influenza, with the largest published genome-wide association studies for these conditions including >2 million individuals2 and about 1,000 individuals3-6, respectively. Shared genetic risk factors could point to targets to prevent or treat both infections. Through a genetic study of 18,334 cases with a positive test for influenza and 276,295 controls, we show that published COVID-19 risk variants are not associated with influenza. Furthermore, we discovered and replicated an association between influenza infection and noncoding variants in B3GALT5 and ST6GAL1, neither of which was associated with COVID-19. In vitro small interfering RNA knockdown of ST6GAL1-an enzyme that adds sialic acid to the cell surface, which is used for viral entry-reduced influenza infectivity by 57%. These results mirror the observation that variants that downregulate ACE2, the SARS-CoV-2 receptor, protect against COVID-19 (ref. 7). Collectively, these findings highlight downregulation of key cell surface receptors used for viral entry as treatment opportunities to prevent COVID-19 and influenza.
Assuntos
COVID-19 , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Influenza Humana , SARS-CoV-2 , Humanos , Influenza Humana/genética , Influenza Humana/epidemiologia , Influenza Humana/virologia , COVID-19/genética , COVID-19/virologia , Fatores de Risco , SARS-CoV-2/genética , Masculino , Feminino , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Pessoa de Meia-IdadeRESUMO
Purpose: Population-scale, exome-sequenced cohorts with linked electronic health records (EHR) permit genome-first exploration of phenotype. Phenotype and cancer risk are well-characterized in children with a pathogenic DICER1 (HGNC ID:17098) variant. Here, the prevalence, penetrance and phenotype of pathogenic germline DICER1 variants in adults was investigated in two population-scale cohorts. Methods: Variant pathogenicity was classified using published DICER1 ClinGen criteria in the UK Biobank (469,787 exomes; unrelated: 437,663) and Geisinger (170,503 exomes; unrelated: 109,789) cohorts. In the UK Biobank cohort, cancer diagnoses in the EHR, cancer and death registry were queried. For the Geisinger cohort, the Geisinger Cancer Registry and EHR were queried. Results: In the UK Biobank, there were 46 unique pathogenic DICER1 variants in 57 individuals (1:8,242;95%CI:1:6,362-1:10,677). In Geisinger, there were 16 unique pathogenic DICER1 variants (including one microdeletion) in 21 individuals (1:8,119;95%CI:1:5,310-1:12,412). Cohorts were well-powered to find larger effect sizes for common cancers. Cancers were not significantly enriched in DICER1 heterozygotes; however, there was a ~4-fold increased risk for thyroid disease in both cohorts. There were multiple ICD10 codes enriched >2-fold in both cohorts. Conclusion: Estimates of pathogenic germline DICER1 prevalence, thyroid disease penetrance and cancer phenotype from genomically ascertained adults are determined in two large cohorts.
RESUMO
We report a multi-ancestry genome-wide association study on liver cirrhosis and its associated endophenotypes, alanine aminotransferase (ALT) and γ-glutamyl transferase. Using data from 12 cohorts, including 18,265 cases with cirrhosis, 1,782,047 controls, up to 1 million individuals with liver function tests and a validation cohort of 21,689 cases and 617,729 controls, we identify and validate 14 risk associations for cirrhosis. Many variants are located near genes involved in hepatic lipid metabolism. One of these, PNPLA3 p.Ile148Met, interacts with alcohol intake, obesity and diabetes on the risk of cirrhosis and hepatocellular carcinoma (HCC). We develop a polygenic risk score that associates with the progression from cirrhosis to HCC. By focusing on prioritized genes from common variant analyses, we find that rare coding variants in GPAM associate with lower ALT, supporting GPAM as a potential target for therapeutic inhibition. In conclusion, this study provides insights into the genetic underpinnings of cirrhosis.
Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Cirrose Hepática , Humanos , Cirrose Hepática/genética , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/genética , Alanina Transaminase/sangue , Polimorfismo de Nucleotídeo Único , Masculino , Lipase/genética , Feminino , gama-Glutamiltransferase/genética , Proteínas de Membrana/genética , Estudos de Coortes , Estudos de Casos e Controles , Herança Multifatorial/genética , Fatores de Risco , Variação GenéticaRESUMO
GPR37L1 is an orphan receptor that couples through heterotrimeric G-proteins to regulate physiological functions. Since its role in humans is not fully defined, we used an unbiased computational approach to assess the clinical significance of rare G-protein-coupled receptor 37-like 1 (GPR37L1) genetic variants found among 51,289 whole-exome sequences from the DiscovEHR cohort. Rare GPR37L1 coding variants were binned according to predicted pathogenicity and analyzed by sequence kernel association testing to reveal significant associations with disease diagnostic codes for epilepsy and migraine, among others. Since associations do not prove causality, rare GPR37L1 variants were functionally analyzed in SK-N-MC cells to evaluate potential signaling differences and pathogenicity. Notably, receptor variants exhibited varying abilities to reduce cAMP levels, activate mitogen-activated protein kinase (MAPK) signaling, and/or upregulate receptor expression in response to the agonist prosaptide (TX14(A)), as compared with the wild-type receptor. In addition to signaling changes, knock-out (KO) of GPR37L1 or expression of certain rare variants altered cellular cholesterol levels, which were also acutely regulated by administration of the agonist TX14(A) via activation of the MAPK pathway. Finally, to simulate the impact of rare nonsense variants found in the large patient cohort, a KO mouse line lacking Gpr37l1 was generated. Although KO animals did not recapitulate an acute migraine phenotype, the loss of this receptor produced sex-specific changes in anxiety-related disorders often seen in chronic migraineurs. Collectively, these observations define the existence of rare GPR37L1 variants associated with neuropsychiatric conditions in the human population and identify the signaling changes contributing to pathological processes.
Assuntos
Transtornos de Enxaqueca , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Animais , Humanos , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/metabolismo , Camundongos , Masculino , Feminino , Camundongos Knockout , Transtornos de Ansiedade/genética , Transtornos de Ansiedade/metabolismo , Camundongos Endogâmicos C57BL , Variação Genética/genéticaRESUMO
Optic neuritis (ON) is associated with numerous immune-mediated inflammatory diseases, but 50% patients are ultimately diagnosed with multiple sclerosis (MS). Differentiating MS-ON from non-MS-ON acutely is challenging but important; non-MS ON often requires urgent immunosuppression to preserve vision. Using data from the United Kingdom Biobank we showed that combining an MS-genetic risk score (GRS) with demographic risk factors (age, sex) significantly improved MS prediction in undifferentiated ON; one standard deviation of MS-GRS increased the Hazard of MS 1.3-fold (95% confidence interval 1.07-1.55, P < 0.01). Participants stratified into quartiles of predicted risk developed incident MS at rates varying from 4% (95%CI 0.5-7%, lowest risk quartile) to 41% (95%CI 33-49%, highest risk quartile). The model replicated across two cohorts (Geisinger, USA, and FinnGen, Finland). This study indicates that a combined model might enhance individual MS risk stratification, paving the way for precision-based ON treatment and earlier MS disease-modifying therapy.
Assuntos
Esclerose Múltipla , Neurite Óptica , Humanos , Estratificação de Risco Genético , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/genética , Esclerose Múltipla/complicações , Neurite Óptica/diagnóstico , Neurite Óptica/genética , Neurite Óptica/complicações , Fatores de Risco , FinlândiaRESUMO
BACKGROUND: Despite its prevalence and associated morbidity, we remain limited in our ability to predict the course of a patient with diverticular disease. Although several clinical and genetic risk factors have been identified, we do not know how these factors relate to one another. OBJECTIVE: Our aim was to determine whether a polygenic risk score could improve risk prediction for diverticulitis and recurrent diverticulitis compared with a model using only clinical factors. DESIGN: This is an observational study. SETTING: The study examines the predictive ability of a polygenic risk score for diverticulitis developed using prior genome-wide association studies and validated using the MyCode biobank. PATIENTS: This study included patients of European ancestry in the Geisinger Health System who were enrolled in the MyCode Community Health biobanking program. MAIN OUTCOME MEASURES: The ability of a polygenic risk score to predict diverticulosis, diverticulitis, and recurrent diverticulitis was the main outcome measure of this study. RESULTS: A total of 60,861 patients were included, of whom 9912 (16.3%) had diverticulosis or diverticulitis (5015 with diverticulosis and 4897 with diverticulitis). When divided into deciles, our polygenic risk score stratified patients by risk of both diverticulosis and diverticulitis with a 2-fold difference in disease risk between the highest and lowest deciles for diverticulitis and a 4.8-fold difference for recurrent complicated diverticulitis. When compared with clinical factors alone, our polygenic risk score was able to improve risk prediction of recurrent diverticulitis. LIMITATIONS: Our population is largely located in a single geographic region and were classified by disease status, using international classification of diseases codes. CONCLUSIONS: This predictive model stratifies patients based on genetic risk for diverticular disease. The increased frequency of recurrent disease in our high-risk patients suggests that a polygenic risk score, in addition to other factors, may help guide the discussion regarding surgical intervention. See Video Abstract . DESARROLLO DE UNA PUNTUACIN DE RIESGO POLIGNICO PARA PREDECIR LA DIVERTICULITIS: ANTECEDENTES:A pesar de su prevalencia y morbilidad asociada, nuestra capacidad para predecir el curso en un paciente con enfermedad diverticular sigue siendo limitada. Si bien se han identificado varios factores de riesgo clínicos y genéticos, no sabemos cómo se relacionan estos factores entre sí.OBJETIVO:Determinar si una puntuación de riesgo poligénico podría mejorar la predicción del riesgo de diverticulitis y diverticulitis recurrente en comparación con un modelo que utiliza solo factores clínicos.DISEÑO:Un estudio observacional que examina la capacidad predictiva de una puntuación de riesgo poligénico para la diverticulitis desarrollada usando estudios previos de asociación amplia del genoma y validada usando el biobanco MyCode.ÁMBITOS Y PACIENTES:Pacientes de ascendencia europea en el Sistema de Salud Geisinger que estaban inscritos en el programa de biobancos MyCode Community Health.PRINCIPALES MEDIDAS DE VALORACIÓN:La capacidad de una puntuación de riesgo poligénico para predecir diverticulosis, diverticulitis y diverticulitis recurrente.RESULTADOS:Se incluyeron un total de 60.861 pacientes, de los cuales 9.912 (16,3%) presentaban diverticulosis o diverticulitis (5.015 con diverticulosis y 4.897 con diverticulitis). Cuando se dividió en deciles, nuestra puntuación de riesgo poligénico estratificó a los pacientes según el riesgo de diverticulosis y diverticulitis con una diferencia de 2 veces en el riesgo de enfermedad entre los deciles más alto y más bajo para diverticulitis y una diferencia de 4,8 veces para diverticulitis complicada recurrente. En comparación con los factores clínicos solos, nuestra puntuación de riesgo poligénico pudo mejorar la predicción del riesgo de diverticulitis recurrente.LIMITACIONES:Nuestra población se encuentra en gran parte en una sola región geográfica y se clasificó por estado de enfermedad utilizando códigos de clasificación internacional de enfermedades.CONCLUSIONES:Este modelo predictivo estratifica a los pacientes en función del riesgo genético de enfermedad diverticular. La mayor frecuencia de enfermedad recurrente en nuestros pacientes de alto riesgo sugiere que un puntaje de riesgo poligénico, además de otros factores, puede ayudar a guiar la discusión sobre la intervención quirúrgica. (Traducción- Dr. Ingrid Melo ).
Assuntos
Doenças Diverticulares , Doença Diverticular do Colo , Diverticulite , Divertículo , Humanos , Doença Diverticular do Colo/diagnóstico , Doença Diverticular do Colo/epidemiologia , Doença Diverticular do Colo/genética , Estratificação de Risco Genético , Estudo de Associação Genômica Ampla , Bancos de Espécimes Biológicos , Diverticulite/diagnóstico , Diverticulite/epidemiologia , Diverticulite/genética , Divertículo/complicações , Doenças Diverticulares/complicaçõesRESUMO
Pathogenic or likely pathogenic (P/LP) germline TP53 variants are the primary cause of Li-Fraumeni syndrome (LFS), a hereditary cancer predisposition disorder characterized by early-onset cancers. The population prevalence of P/LP germline TP53 variants is estimated to be approximately one in every 3,500 to 20,000 individuals. However, these estimates are likely impacted by ascertainment biases and lack of clinical and genetic data to account for potential confounding factors, such as clonal hematopoiesis. Genome-first approaches of cohorts linked to phenotype data can further refine these estimates by identifying individuals with variants of interest and then assessing their phenotypes. This study evaluated P/LP germline (variant allele fraction ≥30%) TP53 variants in three cohorts: UK Biobank (UKB, n = 200,590), Geisinger (n = 170,503), and Penn Medicine Biobank (PMBB, n = 43,731). A total of 109 individuals were identified with P/LP germline TP53 variants across the three databases. The TP53 p.R181H variant was the most frequently identified (9 of 109 individuals, 8%). A total of 110 cancers, including 47 hematologic cancers (47 of 110, 43%), were reported in 71 individuals. The prevalence of P/LP germline TP53 variants was conservatively estimated as 1:10,439 in UKB, 1:3,790 in Geisinger, and 1:2,983 in PMBB. These estimates were calculated after excluding related individuals and accounting for the potential impact of clonal hematopoiesis by excluding heterozygotes who ever developed a hematologic cancer. These varying estimates likely reflect intrinsic selection biases of each database, such as healthcare or population-based contexts. Prospective studies of diverse, young cohorts are required to better understand the population prevalence of germline TP53 variants and their associated cancer penetrance.
Assuntos
Síndrome de Li-Fraumeni , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Prevalência , Estudos Prospectivos , Síndrome de Li-Fraumeni/epidemiologia , Predisposição Genética para Doença/genética , Fenótipo , Células GerminativasRESUMO
PURPOSE: Fanconi anemia (FA) is a bone marrow failure and cancer predisposition syndrome caused primarily by biallelic pathogenic variants in 1 of 22 genes involved in DNA interstrand cross-link repair. An enduring question concerns cancer risk of those with a single pathogenic FA gene variant. To investigate all FA genes, this study utilized the DiscovEHR cohort of 170,503 individuals with exome sequencing and electronic health data. METHODS: 5822 subjects with a single pathogenic variant in an FA gene were identified. Two control groups were used in primary analysis deriving cancer risk signals. Secondary exploratory analysis was conducted using the UK Biobank and The Cancer Genome Atlas. RESULTS: Signals for elevated cancer risk were found in all 5 known cancer predisposition genes. Among the remaining 15 genes associated with autosomal recessive inheritance cancer risk signals were found for 4 cancers across 3 genes in the primary cohort but were not validated in secondary cohorts. CONCLUSION: To our knowledge, this is the first and largest FA heterozygote study to use genomic ascertainment and validates well-established cancer predispositions in 5 genes, whereas finding insufficient evidence of predisposition in 15 others. Our findings inform clinical surveillance given how common pathogenic FA variants are in the population.
Assuntos
Anemia de Fanconi , Neoplasias , Humanos , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Heterozigoto , Anemia de Fanconi/genética , Anemia de Fanconi/patologia , Genótipo , Neoplasias/epidemiologia , Neoplasias/genéticaRESUMO
OBJECTIVES: Treatments that prevent sepsis complications are needed. Circulating lipid and protein assemblies-lipoproteins play critical roles in clearing pathogens from the bloodstream. We investigated whether early inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) may accelerate bloodstream clearance of immunogenic bacterial lipids and improve sepsis outcomes. DESIGN: Genetic and clinical epidemiology, and experimental models. SETTING: Human genetics cohorts, secondary analysis of a phase 3 randomized clinical trial enrolling patients with cardiovascular disease (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab [ODYSSEY OUTCOMES]; NCT01663402), and experimental murine models of sepsis. PATIENTS OR SUBJECTS: Nine human cohorts with sepsis (total n = 12,514) were assessed for an association between sepsis mortality and PCSK9 loss-of-function (LOF) variants. Incident or fatal sepsis rates were evaluated among 18,884 participants in a post hoc analysis of ODYSSEY OUTCOMES. C57BI/6J mice were used in Pseudomonas aeruginosa and Staphylococcus aureus bacteremia sepsis models, and in lipopolysaccharide-induced animal models. INTERVENTIONS: Observational human cohort studies used genetic PCSK9 LOF variants as instrumental variables. ODYSSEY OUTCOMES participants were randomized to alirocumab or placebo. Mice were administered alirocumab, a PCSK9 inhibitor, at 5 mg/kg or 25 mg/kg subcutaneously, or isotype-matched control, 48 hours prior to the induction of bacterial sepsis. Mice did not receive other treatments for sepsis. MEASUREMENTS AND MAIN RESULTS: Across human cohort studies, the effect estimate for 28-day mortality after sepsis diagnosis associated with genetic PCSK9 LOF was odds ratio = 0.86 (95% CI, 0.67-1.10; p = 0.24). A significant association was present in antibiotic-treated patients. In ODYSSEY OUTCOMES, sepsis frequency and mortality were infrequent and did not significantly differ by group, although both were numerically lower with alirocumab vs. placebo (relative risk of death from sepsis for alirocumab vs. placebo, 0.62; 95% CI, 0.32-1.20; p = 0.15). Mice treated with alirocumab had lower endotoxin levels and improved survival. CONCLUSIONS: PCSK9 inhibition may improve clinical outcomes in sepsis in preventive, pretreatment settings.
RESUMO
Germline pathogenic loss-of-function (pLOF) variants in DICER1 are associated with a predisposition for a variety of solid neoplasms, including pleuropulmonary blastoma and Sertoli-Leydig cell tumor (SLCT). The most common DICER1 pLOF variants include small insertions or deletions leading to frameshifts, and base substitutions leading to nonsense codons or altered splice sites. Larger deletions and pathogenic missense variants occur less frequently. Identifying these variants can trigger surveillance algorithms with potential for early detection of DICER1-related cancers and cascade testing of family members. However, some patients with DICER1-associated tumors have no pLOF variants detected by germline or tumor testing. Here, we present two patients with SLCT whose tumor sequencing showed only a somatic missense DICER1 RNase IIIb variant. Conventional exon-directed germline sequencing revealed no pLOF variants. Using a custom capture panel, we discovered novel intronic variants, ENST00000343455.7: c.1752+213A>G and c.1509+16A>G, that appear to interfere with normal splicing. We suggest that when no DICER1 pLOF variants or large deletions are discovered in exonic regions despite strong clinical suspicion, intron sequencing and splicing analysis should be performed.
Assuntos
Neoplasias Ovarianas , Tumor de Células de Sertoli-Leydig , Masculino , Feminino , Humanos , Tumor de Células de Sertoli-Leydig/genética , Tumor de Células de Sertoli-Leydig/patologia , Neoplasias Ovarianas/genética , Íntrons/genética , Mutação em Linhagem Germinativa/genética , Mutação , Ribonuclease III/genética , RNA Helicases DEAD-box/genéticaRESUMO
Importance: Knowledge about the prevalence and tumor types of CDKN2A-related melanoma-astrocytoma syndrome (MAS) is limited and could improve disease recognition. Objective: To estimate the prevalence and describe the tumor types of MAS. Design, Setting, and Participants: This retrospective cohort study analyzed all available MAS cases from medical centers in the US (2 sites) and Europe (2 sites) and from biomedical population genomic databases (UK Biobank [United Kingdom], Geisinger MyCode [US]) between January 1, 1976, and December 31, 2020. Patients with MAS with CDKN2A germline pathogenic variants and 1 or more neural tumors were included. Data were analyzed from June 1, 2022, to January 31, 2023. Main Outcomes and Measures: Disease prevalence and tumor frequency. Results: Prevalence of MAS ranged from 1 in 170â¯503 (n = 1 case; 95% CI, 1:30â¯098-1:965â¯887) in Geisinger MyCode (n = 170â¯503; mean [SD] age, 58.9 [19.1] years; 60.6% women; 96.2% White) to 1 in 39â¯149 (n = 12 cases; 95% CI, 1:22â¯396-1:68â¯434) in UK Biobank (n = 469â¯789; mean [SD] age, 70.0 [8.0] years; 54.2% women; 94.8% White). Among UK Biobank patients with MAS (n = 12) identified using an unbiased genomic ascertainment approach, brain neoplasms (4 of 12, 33%; 1 glioblastoma, 1 gliosarcoma, 1 astrocytoma, 1 unspecified type) and schwannomas (3 of 12, 25%) were the most common malignant and benign neural tumors, while cutaneous melanoma (2 of 12, 17%) and head and neck squamous cell carcinoma (2 of 12, 17%) were the most common nonneural malignant neoplasms. In a separate case series of 14 patients with MAS from the US and Europe, brain neoplasms (4 of 14, 29%; 2 glioblastomas, 2 unspecified type) and malignant peripheral nerve sheath tumor (2 of 14, 14%) were the most common neural cancers, while cutaneous melanoma (4 of 14, 29%) and sarcomas (2 of 14, 14%; 1 liposarcoma, 1 unspecified type) were the most common nonneural cancers. Cutaneous neurofibromas (7 of 14, 50%) and schwannomas (2 of 14, 14%) were also common. In 1 US family, a father and son with MAS had clinical diagnoses of neurofibromatosis type 1 (NF1). Genetic testing of the son detected a pathogenic CDKN2A splicing variant (c.151-1G>C) and was negative for NF1 genetic alterations. In UK Biobank, 2 in 150 (1.3%) individuals with clinical NF1 diagnoses had likely pathogenic variants in CDKN2A, including 1 individual with no detected variants in the NF1 gene. Conclusions and Relevance: This cohort study estimates the prevalence and describes the tumors of MAS. Additional studies are needed in genetically diverse populations to further define population prevalence and disease phenotypes.
Assuntos
Astrocitoma , Neoplasias Encefálicas , Melanoma , Neurilemoma , Neurofibromatose 1 , Neoplasias Cutâneas , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Masculino , Melanoma/epidemiologia , Melanoma/genética , Neurofibromatose 1/diagnóstico , Estudos Retrospectivos , Estudos de Coortes , Prevalência , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/genética , Astrocitoma/epidemiologia , Astrocitoma/genética , Fenótipo , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Melanoma Maligno CutâneoRESUMO
GPR37L1 is an orphan receptor that couples through heterotrimeric G-proteins to regulate physiological functions. Since its role in humans is not fully defined, we used an unbiased computational approach to assess the clinical significance of rare GPR37L1 genetic variants found among 51,289 whole exome sequences from the DiscovEHR cohort. Briefly, rare GPR37L1 coding variants were binned according to predicted pathogenicity, and analyzed by Sequence Kernel Association testing to reveal significant associations with disease diagnostic codes for epilepsy and migraine, among others. Since associations do not prove causality, rare GPR37L1 variants were then functionally analyzed in SK-N-MC cells to evaluate potential signaling differences and pathogenicity. Notably, receptor variants exhibited varying abilities to reduce cAMP levels, activate MAPK signaling, and/or upregulate receptor expression in response to the agonist prosaptide (TX14(A)), as compared to the wild-type receptor. In addition to signaling changes, knockout of GPR37L1 or expression of certain rare variants altered cellular cholesterol levels, which were also acutely regulated by administration of the agonist TX14(A) via activation of the MAPK pathway. Finally, to simulate the impact of rare nonsense variants found in the large patient cohort, a knockout (KO) mouse line lacking Gpr37L1 was generated, revealing loss of this receptor produced sex-specific changes implicated in migraine-related disorders. Collectively, these observations define the existence of rare GPR37L1 variants in the human population that are associated with neuropsychiatric conditions and identify the underlying signaling changes that are implicated in the in vivo actions of this receptor in pathological processes leading to anxiety and migraine. SIGNIFICANCE STATEMENT: G-protein coupled receptors (GPCRs) represent a diverse group of membrane receptors that contribute to a wide range of diseases and serve as effective drug targets. However, a number of these receptors have no identified ligands or functions, i.e., orphan receptors. Over the past decade, advances have been made, but there is a need for identifying new strategies to reveal their roles in health and disease. Our results highlight the utility of rare variant analyses of orphan receptors for identifying human disease associations, coupled with functional analyses in relevant cellular and animal systems, to ultimately reveal their roles as novel drug targets for treatment of neurological disorders that lack wide-spread efficacy.
RESUMO
Importance: VEXAS (vacuoles, E1-ubiquitin-activating enzyme, X-linked, autoinflammatory, somatic) syndrome is a disease with rheumatologic and hematologic features caused by somatic variants in UBA1. Pathogenic variants are associated with a broad spectrum of clinical manifestations. Knowledge of prevalence, penetrance, and clinical characteristics of this disease have been limited by ascertainment biases based on known phenotypes. Objective: To determine the prevalence of pathogenic variants in UBA1 and associated clinical manifestations in an unselected population using a genomic ascertainment approach. Design, Setting, and Participants: This retrospective observational study evaluated UBA1 variants in exome data from 163â¯096 participants within the Geisinger MyCode Community Health Initiative. Clinical phenotypes were determined from Geisinger electronic health record data from January 1, 1996, to January 1, 2022. Exposures: Exome sequencing was performed. Main Outcomes and Measures: Outcome measures included prevalence of somatic UBA1 variation; presence of rheumatologic, hematologic, pulmonary, dermatologic, and other findings in individuals with somatic UBA1 variation on review of the electronic health record; review of laboratory data; bone marrow biopsy pathology analysis; and in vitro enzymatic assays. Results: In 163â¯096 participants (mean age, 52.8 years; 94% White; 61% women), 11 individuals harbored likely somatic variants at known pathogenic UBA1 positions, with 11 of 11 (100%) having clinical manifestations consistent with VEXAS syndrome (9 male, 2 female). A total of 5 of 11 individuals (45%) did not meet criteria for rheumatologic and/or hematologic diagnoses previously associated with VEXAS syndrome; however, all individuals had anemia (hemoglobin: mean, 7.8 g/dL; median, 7.5 g/dL), which was mostly macrocytic (10/11 [91%]) with concomitant thrombocytopenia (10/11 [91%]). Among the 11 patients identified, there was a pathogenic variant in 1 male participant prior to onset of VEXAS-related signs or symptoms and 2 female participants had disease with heterozygous variants. A previously unreported UBA1 variant (c.1861A>T; p.Ser621Cys) was found in a symptomatic patient, with in vitro data supporting a catalytic defect and pathogenicity. Together, disease-causing UBA1 variants were found in 1 in 13â¯591 unrelated individuals (95% CI, 1:7775-1:23â¯758), 1 in 4269 men older than 50 years (95% CI, 1:2319-1:7859), and 1 in 26â¯238 women older than 50 years (95% CI, 1:7196-1:147â¯669). Conclusions and Relevance: This study provides an estimate of the prevalence and a description of the clinical manifestations of UBA1 variants associated with VEXAS syndrome within a single regional health system in the US. Additional studies are needed in unselected and genetically diverse populations to better define general population prevalence and phenotypic spectrum.
Assuntos
Síndromes Mielodisplásicas , Dermatopatias Genéticas , Enzimas Ativadoras de Ubiquitina , Feminino , Humanos , Masculino , Biópsia , Registros Eletrônicos de Saúde , Prevalência , Síndromes Mielodisplásicas/complicações , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/epidemiologia , Síndromes Mielodisplásicas/genética , Enzimas Ativadoras de Ubiquitina/genética , Mutação , Estudos Retrospectivos , Exoma , Pessoa de Meia-Idade , Dermatopatias Genéticas/complicações , Dermatopatias Genéticas/diagnóstico , Dermatopatias Genéticas/epidemiologia , Dermatopatias Genéticas/genética , Estados Unidos/epidemiologiaRESUMO
Importance: Most studies of autosomal dominant polycystic kidney disease (ADPKD) genetics have used kidney specialty cohorts, focusing on PKD1 and PKD2. These can lead to biased estimates of population prevalence of ADPKD-associated gene variants and their phenotypic expression. Objective: To determine the prevalence of ADPKD and contributions of PKD1, PKD2, and other genes related to cystic kidney disease in a large, unselected cohort. Design, Setting, and Participants: This retrospective observational study used an unselected health system-based cohort in central and northeast Pennsylvania with exome sequencing (enrolled from 2004 to 2020) and electronic health record data (up to October 2021). The genotype-first approach included the entire cohort and the phenotype-first approach focused on patients with ADPKD diagnosis codes, confirmed by chart and imaging review. Exposures: Loss-of-function (LOF) variants in PKD1, PKD2, and other genes associated with cystic kidney disease (ie, ALG8, ALG9, DNAJB11, GANAB, HNF1B, IFT140, SEC61B, PKHD1, PRKCSH, SEC63); likely pathogenic missense variants in PKD1 and PKD2. Main Outcomes and Measures: Genotype-first analysis: ADPKD diagnosis code (Q61.2, Q61.3, 753.13, 753.12); phenotype-first analysis: presence of a rare variant in PKD1, PKD2, or other genes associated with cystic kidney disease. Results: Of 174â¯172 patients (median age, 60 years; 60.6% female; 93% of European ancestry), 303 patients had ADPKD diagnosis codes, including 235 with sufficient chart review data for confirmation. In addition to PKD1 and PKD2, LOF variants in IFT140, GANAB, and HNF1B were associated with ADPKD diagnosis after correction for multiple comparisons. Among patients with LOF variants in PKD1, 66 of 68 (97%) had ADPKD; 43 of 43 patients (100%) with LOF variants in PKD2 had ADPKD. In contrast, only 24 of 77 patients (31.2%) with a PKD1 missense variant previously classified as "likely pathogenic" had ADPKD, suggesting misclassification or variable penetrance. Among patients with ADPKD diagnosis confirmed by chart review, 180 of 235 (76.6%) had a potential genetic cause, with the majority being rare variants in PKD1 (127 patients) or PKD2 (34 patients); 19 of 235 (8.1%) had variants in other genes associated with cystic kidney disease. Of these 235 patients with confirmed ADPKD, 150 (63.8%) had a family history of ADPKD. The yield for a genetic determinant of ADPKD was higher for those with a family history of ADPKD compared with those without family history (91.3% [137/150] vs 50.6% [43/85]; difference, 40.7% [95% CI, 29.2%-52.3%]; P < .001). Previously unreported PKD1, PKD2, and GANAB variants were identified with pedigree data suggesting pathogenicity, and several PKD1 missense variants previously reported as likely pathogenic appeared to be benign. Conclusions and Relevance: This study demonstrates substantial genetic and phenotypic variability in ADPKD among patients within a regional health system in the US.
Assuntos
Sequenciamento do Exoma , Rim Policístico Autossômico Dominante , Feminino , Humanos , Masculino , Rim/patologia , Mutação , Rim Policístico Autossômico Dominante/genética , Estudos Retrospectivos , Canais de Cátion TRPP/genética , Pessoa de Meia-IdadeRESUMO
The true prevalence and penetrance of monogenic disease variants are often not known because of clinical-referral ascertainment bias. We comprehensively assess the penetrance and prevalence of pathogenic variants in HNF1A, HNF4A, and GCK that account for >80% of monogenic diabetes. We analyzed clinical and genetic data from 1,742 clinically referred probands, 2,194 family members, clinically unselected individuals from a US health system-based cohort (n = 132,194), and a UK population-based cohort (n = 198,748). We show that one in 1,500 individuals harbor a pathogenic variant in one of these genes. The penetrance of diabetes for HNF1A and HNF4A pathogenic variants was substantially lower in the clinically unselected individuals compared to clinically referred probands and was dependent on the setting (32% in the population, 49% in the health system cohort, 86% in a family member, and 98% in probands for HNF1A). The relative risk of diabetes was similar across the clinically unselected cohorts highlighting the role of environment/other genetic factors. Surprisingly, the penetrance of pathogenic GCK variants was similar across all cohorts (89%-97%). We highlight that pathogenic variants in HNF1A, HNF4A, and GCK are not ultra-rare in the population. For HNF1A and HNF4A, we need to tailor genetic interpretation and counseling based on the setting in which a pathogenic monogenic variant was identified. GCK is an exception with near-complete penetrance in all settings. This along with the clinical implication of diagnosis makes it an excellent candidate for the American College of Medical Genetics secondary gene list.
Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Penetrância , Diabetes Mellitus Tipo 2/diagnóstico , Estudos de Coortes , Prevalência , Mutação , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/genéticaRESUMO
Introduction: Monogenic causes in over 300 kidney-associated genes account for approximately 12% of end stage kidney disease (ESKD) cases. Advances in sequencing and large customized panels enable the noninvasive diagnosis of monogenic kidney disease at relatively low cost, thereby allowing for more precise management for patients and their families. A major challenge is interpreting rare variants, many of which are classified as variants of unknown significance (VUS). We present a framework in which we thoroughly evaluated and provided evidence of pathogenicity for HNF1B-p.Arg303His, a VUS returned from clinical diagnostic testing for a kidney transplant candidate. Methods: A blueprint was designed by a multidisciplinary team of clinicians, molecular biologists, and diagnostic geneticists. The blueprint included using a health system-based cohort with genetic and clinical information to perform deep phenotyping of VUS heterozygotes to identify the candidate VUS and rule out other VUS, examination of existing genetic databases, as well as functional testing. Results: Our approach demonstrated evidence for pathogenicity for HNF1B-p.Arg303His by showing similar burden of kidney manifestations in this variant to known HNF1B pathogenic variants, and greater burden compared to noncarriers. Conclusion: Determination of a molecular diagnosis for the example family allows for proper surveillance and management of HNF1B-related manifestations such as kidney disease, diabetes, and hypomagnesemia with important implications for safe living-related kidney donation. The candidate gene-variant pair also allows for clinical biomarker testing for aberrations of linked pathways. This working model may be applicable to other diseases of genetic etiology.
RESUMO
BACKGROUND: Exome sequencing in hundreds of thousands of persons may enable the identification of rare protein-coding genetic variants associated with protection from human diseases like liver cirrhosis, providing a strategy for the discovery of new therapeutic targets. METHODS: We performed a multistage exome sequencing and genetic association analysis to identify genes in which rare protein-coding variants were associated with liver phenotypes. We conducted in vitro experiments to further characterize associations. RESULTS: The multistage analysis involved 542,904 persons with available data on liver aminotransferase levels, 24,944 patients with various types of liver disease, and 490,636 controls without liver disease. We found that rare coding variants in APOB, ABCB4, SLC30A10, and TM6SF2 were associated with increased aminotransferase levels and an increased risk of liver disease. We also found that variants in CIDEB, which encodes a structural protein found in hepatic lipid droplets, had a protective effect. The burden of rare predicted loss-of-function variants plus missense variants in CIDEB (combined carrier frequency, 0.7%) was associated with decreased alanine aminotransferase levels (beta per allele, -1.24 U per liter; 95% confidence interval [CI], -1.66 to -0.83; P = 4.8×10-9) and with 33% lower odds of liver disease of any cause (odds ratio per allele, 0.67; 95% CI, 0.57 to 0.79; P = 9.9×10-7). Rare coding variants in CIDEB were associated with a decreased risk of liver disease across different underlying causes and different degrees of severity, including cirrhosis of any cause (odds ratio per allele, 0.50; 95% CI, 0.36 to 0.70). Among 3599 patients who had undergone bariatric surgery, rare coding variants in CIDEB were associated with a decreased nonalcoholic fatty liver disease activity score (beta per allele in score units, -0.98; 95% CI, -1.54 to -0.41 [scores range from 0 to 8, with higher scores indicating more severe disease]). In human hepatoma cell lines challenged with oleate, CIDEB small interfering RNA knockdown prevented the buildup of large lipid droplets. CONCLUSIONS: Rare germline mutations in CIDEB conferred substantial protection from liver disease. (Funded by Regeneron Pharmaceuticals.).