Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JMIR Form Res ; 8: e46087, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285495

RESUMO

BACKGROUND: The COVID-19 pandemic has highlighted gaps in the current handling of medical resource demand surges and the need for prioritizing scarce medical resources to mitigate the risk of health care facilities becoming overwhelmed. OBJECTIVE: During a health care emergency, such as the COVID-19 pandemic, the public often uses social media to express negative sentiment (eg, urgency, fear, and frustration) as a real-time response to the evolving crisis. The sentiment expressed in COVID-19 posts may provide valuable real-time information about the relative severity of medical resource demand in different regions of a country. In this study, Twitter (subsequently rebranded as X) sentiment analysis was used to investigate whether an increase in negative sentiment COVID-19 tweets corresponded to a greater demand for hospital intensive care unit (ICU) beds in specific regions of the United States, Brazil, and India. METHODS: Tweets were collected from a publicly available data set containing COVID-19 tweets with sentiment labels and geolocation information posted between February 1, 2020, and March 31, 2021. Regional medical resource shortage data were gathered from publicly available data sets reporting a time series of ICU bed demand across each country. Negative sentiment tweets were analyzed using the Granger causality test and convergent cross-mapping (CCM) analysis to assess the utility of the time series of negative sentiment tweets in forecasting ICU bed shortages. RESULTS: For the United States (30,742,934 negative sentiment tweets), the results of the Granger causality test (for whether negative sentiment COVID-19 tweets forecast ICU bed shortage, assuming a stochastic system) were significant (P<.05) for 14 (28%) of the 50 states that passed the augmented Dickey-Fuller test at lag 2, and the results of the CCM analysis (for whether negative sentiment COVID-19 tweets forecast ICU bed shortage, assuming a dynamic system) were significant (P<.05) for 46 (92%) of the 50 states. For Brazil (3,004,039 negative sentiment tweets), the results of the Granger causality test were significant (P<.05) for 6 (22%) of the 27 federative units, and the results of the CCM analysis were significant (P<.05) for 26 (96%) of the 27 federative units. For India (4,199,151 negative sentiment tweets), the results of the Granger causality test were significant (P<.05) for 6 (23%) of the 26 included regions (25 states and the national capital region of Delhi), and the results of the CCM analysis were significant (P<.05) for 26 (100%) of the 26 included regions. CONCLUSIONS: This study provides a novel approach for identifying the regions of high hospital bed demand during a health care emergency scenario by analyzing Twitter sentiment data. Leveraging analyses that take advantage of natural language processing-driven tweet extraction systems has the potential to be an effective method for the early detection of medical resource demand surges.

2.
J Biol Chem ; 299(11): 105326, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37805140

RESUMO

tRNAs undergo an extensive maturation process involving posttranscriptional modifications often associated with tRNA structural stability and promoting the native fold. Impaired posttranscriptional modification has been linked to human disease, likely through defects in translation, mitochondrial function, and increased susceptibility to degradation by various tRNA decay pathways. More recently, evidence has emerged that bacterial tRNA modification enzymes can act as tRNA chaperones to guide tRNA folding in a manner independent from catalytic activity. Here, we provide evidence that the fission yeast tRNA methyltransferase Trm1, which dimethylates nuclear- and mitochondrial-encoded tRNAs at G26, can also promote tRNA functionality in the absence of catalysis. We show that WT and catalytic-dead Trm1 are active in an in vivo tRNA-mediated suppression assay and possess RNA strand annealing and dissociation activity in vitro, similar to previously characterized RNA chaperones. Trm1 and the RNA chaperone La have previously been proposed to function synergistically in promoting tRNA maturation, yet we surprisingly demonstrate that La binding to nascent pre-tRNAs decreases Trm1 tRNA dimethylation in vivo and in vitro. Collectively, these results support the hypothesis for tRNA modification enzymes that combine catalytic and noncatalytic activities to promote tRNA maturation, as well as expand our understanding of how La function can influence tRNA modification.


Assuntos
Schizosaccharomyces , tRNA Metiltransferases , Humanos , tRNA Metiltransferases/química , RNA/metabolismo , RNA de Transferência/metabolismo , Processamento Pós-Transcricional do RNA , Precursores de RNA/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA