Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
NPJ Vaccines ; 9(1): 136, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097573

RESUMO

Avian influenza poses a severe threat to poultry production and global food security, prompting the development of vaccination programs in numerous countries. Modified live virus (MLV) vaccines, with their potential for mass application, offer a distinct advantage over existing options. However, concerns surrounding reversion, recombination, and unintended transmission have hindered the progress of MLV development for avian influenza in poultry. To address these concerns, we engineered reassortment-impaired, non-transmissible, safe, immunogenic, and protective MLVs through the rearrangement of internal gene segments and additional modifications to the surface gene segments HA and NA. The unique peptide marker aspartic acid-arginine-proline-alanine-valine-isoleucine-alanine-asparragine (DRPAVIAN) was incorporated into HA, while NA was modified to encode the chicken interleukin-18 (ckIL18) gene (MLV-H9N2-IL). In vitro, the MLV-H9N2 and MLV-H9N2-IL candidates demonstrated stability and virus titers comparable to the wild-type H9N2 strain. In chickens, the MLV-H9N2 and MLV-H9N2-IL candidates did not transmit via direct contact. Co-infection studies with wild-type virus confirmed that the altered HA and NA segments exhibited fitness disadvantages and did not reassort. Vaccinated chickens showed no clinical signs upon vaccination, all seroconverted, and the inclusion of ckIL18 in the MLV-H9N2-IL vaccine enhanced neutralizing antibody production. A significant decrease in viral loads post-challenge underscored the protective effect of the MLVs. The MLV-H9N2-IL vaccine, administered via drinking water, proved immunogenic in chickens in a dose-dependent manner, generating protective levels of neutralizing antibodies upon aggressive homologous virus challenge. In summary, this study lays the groundwork for safe MLVs against avian influenza suitable for mass vaccination efforts.

2.
Hum Vaccin Immunother ; 20(1): 2347019, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38807261

RESUMO

Influenza A viruses pose a significant threat to global health, impacting both humans and animals. Zoonotic transmission, particularly from swine and avian species, is the primary source of human influenza outbreaks. Notably, avian influenza viruses of the H5N1, H7N9, and H9N2 subtypes are of pandemic concern through their global spread and sporadic human infections. Preventing and controlling these viruses is critical due to their high threat level. Vaccination remains the most effective strategy for influenza prevention and control in humans, despite varying vaccine efficacy across strains. This review focuses specifically on pandemic preparedness for avian influenza viruses. We delve into vaccines tested in animal models and summarize clinical trials conducted on H5N1, H7N9, and H9N2 vaccines in humans.


Assuntos
Aves , Vacinas contra Influenza , Influenza Aviária , Influenza Humana , Pandemias , Animais , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Humanos , Influenza Humana/prevenção & controle , Influenza Humana/epidemiologia , Influenza Humana/imunologia , Influenza Aviária/prevenção & controle , Influenza Aviária/epidemiologia , Pandemias/prevenção & controle , Desenvolvimento de Vacinas , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vírus da Influenza A Subtipo H9N2/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Vacinação , Preparação para Pandemia
3.
Proc Natl Acad Sci U S A ; 120(17): e2208718120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068231

RESUMO

The hemagglutinin (HA) stem region is a major target of universal influenza vaccine efforts owing to the presence of highly conserved epitopes across multiple influenza A virus (IAV) strains and subtypes. To explore the potential impact of vaccine-induced immunity targeting the HA stem, we examined the fitness effects of viral escape from stem-binding broadly neutralizing antibodies (stem-bnAbs). Recombinant viruses containing each individual antibody escape substitution showed diminished replication compared to wild-type virus, indicating that stem-bnAb escape incurred fitness costs. A second-site mutation in the HA head domain (N129D; H1 numbering) reduced the fitness effects observed in primary cell cultures and likely enabled the selection of escape mutations. Functionally, this putative permissive mutation increased HA avidity for its receptor. These results suggest a mechanism of epistasis in IAV, wherein modulating the efficiency of attachment eases evolutionary constraints imposed by the requirement for membrane fusion. Taken together, the data indicate that viral escape from stem-bnAbs is costly but highlights the potential for epistatic interactions to enable evolution within the functionally constrained HA stem domain.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes/genética , Epistasia Genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vacinas contra Influenza/genética , Hemaglutininas , Influenza Humana/genética , Influenza Humana/prevenção & controle
4.
FEBS Open Bio ; 12(6): 1142-1165, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35451200

RESUMO

Influenza A and B viruses are among the most prominent human respiratory pathogens. About 3-5 million severe cases of influenza are associated with 300 000-650 000 deaths per year globally. Antivirals effective at reducing morbidity and mortality are part of the first line of defense against influenza. FDA-approved antiviral drugs currently include adamantanes (rimantadine and amantadine), neuraminidase inhibitors (NAI; peramivir, zanamivir, and oseltamivir), and the PA endonuclease inhibitor (baloxavir). Mutations associated with antiviral resistance are common and highlight the need for further improvement and development of novel anti-influenza drugs. A summary is provided for the current knowledge of the approved influenza antivirals and antivirals strategies under evaluation in clinical trials. Preclinical evaluations of novel compounds effective against influenza in different animal models are also discussed.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Animais , Antivirais/farmacologia , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/tratamento farmacológico , Modelos Animais , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA