RESUMO
Traumatic brain injury (TBI) often leads to substantial adverse cognitive and health outcomes, including permanent disability and death. Preventing these outcomes requires attenuation of the secondary biochemical damage that follows the initial biomechanical insult, but a clinically proven pharmacotherapeutic capable of such has not been identified. In fact, the heterogeneous nature of TBI and the complexity of secondary injury cascades suggest a polytherapeutic approach that targets multiple pathways might be necessary. We and others have reported that 17ß-estradiol (E2) is neuroprotective in models of central nervous system injury. Although E2 is neuroprotective and favorably modulates several key components of secondary injury, it does not effectively block the destructive excitotoxic cascade. Thus, administering E2 in combination with a second drug that targets excitotoxicity, such as the FDA-approved uncompetitive NMDA receptor antagonist memantine hydrochloride, may provide additional benefits. Here, we assessed the neuroprotective potential of an acutely administered intravenous bolus dose of a combination of memantine and E2 after induction of experimental TBI in the clinically relevant lateral fluid percussion model. Our results indicate that the combination of these drugs conferred neuroprotection by increasing neuronal survival and decreasing neuronal degeneration in the hippocampus and cortex ipsilateral to injury. Furthermore, administration of this combination improved vestibulomotor deficits and modestly reduced anxiety. We conclude that further investigation of the neuroprotective potential of memantine administered with E2 is warranted.
Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Estradiol/farmacologia , Memantina/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismoRESUMO
Mounting evidence has established that diet-induced obesity (DIO) is associated with deficits in hippocampus-dependent memory. The bulk of research studies dealing with this topic have utilized rats fed a high-fat diet as an experimental model. To date, there has been a paucity of research studies that have established whether the memory deficits exhibited in DIO rats can be recapitulated in mice. Moreover, the majority of experiments that have evaluated memory performance in rodent models of DIO have utilized memory tests that are essentially aversive in nature (i.e., Morris water maze). The current study sought to fill an empirical void by determining if mice maintained on a high-fat diet exhibit deficits in two non-aversive memory paradigms: novel object recognition (NOR) and object location memory (OLM). Here we report that mice fed a high-fat diet over 23 weeks exhibit intact NOR, albeit a marked impairment in hippocampus-dependent OLM. We also determined the existence of corresponding aberrations in gene expression within the hippocampus of DIO mice. DIO mice exhibited significant reductions in both SIRT1 and PP1 mRNA within the hippocampus. Our data suggest that mice maintained on a high-fat diet present with impaired hippocampus-dependent spatial memory and a corresponding alteration in the expression of genes that have been implicated in memory consolidation.