RESUMO
PURPOSE: The novel coronavirus disease (COVID-19) has revived the debate on the optimal tidal volume during acute respiratory distress syndrome (ARDS). Some experts recommend 6 mL/kg of predicted body weight (PBW) for all patients, while others suggest 7-9 mL/kg PBW for those with compliance >50 mL/cmH2O. We investigated whether a tidal volume ≥ 7 ml/kg PBW may be safe in COVID-19 patients, particularly those with compliance >50 mL/cmH2O. MATERIALS AND METHODS: This secondary analysis of a multicenter study compares the Intensive Care Unit (ICU) mortality among 600 patients ventilated with <7 or ≥ 7 mL/kg PBW. Compliance was categorized as <40, 40-50, or > 50 mL/cmH2O. RESULTS: 346 patients were ventilated with <7 (6.2 ± 0.5) mL/kg PBW and 254 with ≥7 (7.9 ± 0.9) mL/kg PBW. ICU mortality was 33 % and 29 % in the two groups (p = 0.272). At multivariable regression analysis, tidal volume ≥ 7 mL/kg PBW was associated with lower ICU mortality in the overall population (odds ratio: 0.62 [95 %-confidence interval: 0.40-0.95]) and in each compliance category. CONCLUSIONS: A tidal volume ≥ 7 (up to 9) mL/kg PBW was associated with lower ICU mortality in these COVID-19 patients, including those with compliance <40 mL/cmH2O. This finding should be interpreted cautiously due to the retrospective study design. TRIAL REGISTRATION: ClinicalTrails.govNCT04388670.
RESUMO
During COVID-19 pandemic, vaccination has been strongly recommended and advocated to prevent COVID-19 infection and adverse outcomes, particularly among at-risk populations. The vaccination against SARS-CoV-2 (COVAC) occurred at off-site locations capable of accommodating large crowds, distinct from the hospital setting, where a team of intensivists, emergency physicians, and nurses, ensuring prompt medical attention (medical occurrences, MO) in cases of adverse event following immunization. Our aims were to estimate the incidence of MO, and to assess its association with demographics, and vaccine characteristics. Our retrospective cohort study included all subject aged 12 years and older who received vaccinations at two large out-of-hospital vaccination hubs (Fiera Milano City, Palazzo delle Scintille), between April 12th and August 31st, 2021. Nine hundred and ninety-five thousand and twenty-eight vaccinations were administrated. MOs incidence rate was 278/100,000 doses (95% confidence interval (CI) 268-289). Most MOs were mild (86.27%) and mainly observed in subjects who received the Comirnaty vaccine; 92 MOs (3.32%) were severe and mostly occurred in recipients of the Vaxzeria vaccine. The incidence rate for hospital transfers following vaccination was 4.7/100,000 doses (95% CI 3.5-6.2) and any level of anaphylaxis occurred in 0.4 cases per 100,000 administrated doses (95% CI 0.3.-0.7). Sex, age, type of vaccine and first dose were associated with incidence of MO. Our results showed a low incidence rate in MOs after COVAC, mainly mild and support the feasibility, effectiveness and safety of vaccinations administered in hubs with a dedicated SEU located outside of the hospital setting.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Masculino , Feminino , Estudos Retrospectivos , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , COVID-19/epidemiologia , Pessoa de Meia-Idade , Adulto , Idoso , Vacinação/efeitos adversos , Vacinação/estatística & dados numéricos , Vacinação/métodos , Itália/epidemiologia , Adolescente , Criança , Incidência , SARS-CoV-2RESUMO
Cell-free hemoglobin (CFH) is used to detect hemolysis and was recently suggested to trigger acute lung injury. However, its role has not been elucidated in severe acute respiratory distress syndrome (ARDS) patients undergoing extracorporeal membrane oxygenation (ECMO). We investigated the association of carboxyhemoglobin (COHb) and haptoglobin-two indirect markers of hemolysis-with mortality in critically ill patients undergoing veno-venous ECMO (VV-ECMO) with adjusted and longitudinal models (primary aim). Secondary aims included assessment of association between COHb and haptoglobin with the development of ventilator-associated pneumonia (VAP) and with hemodynamics. We retrospectively collected physiological, laboratory biomarkers, and outcome data in 147 patients undergoing VV-ECMO for severe ARDS. Forty-seven patients (32%) died in the intensive care unit (ICU). Average levels of COHb and haptoglobin were higher and lower, respectively, in patients who died. Higher haptoglobin was associated with lower pulmonary (PVR) and systemic vascular resistance, whereas higher COHb was associated with higher PVR. Carboxyhemoglobin was an independent predictor of VAP. Both haptoglobin and COHb independently predicted ICU mortality. In summary, indirect signs of hemolysis including COHb and haptoglobin are associated with modulation of vascular tone, VAP, and ICU mortality in respiratory ECMO. These findings suggest that CFH may be a mechanism of injury in this patient population.
RESUMO
OBJECTIVES: In patients with COVID-19 respiratory failure, controlled mechanical ventilation (CMV) is often necessary during the acute phases of the disease. Weaning from CMV to pressure support ventilation (PSV) is a key objective when the patient's respiratory functions improve. Limited evidence exists regarding the factors predicting a successful transition to PSV and its impact on patient outcomes. DESIGN: Retrospective observational cohort study. SETTING: Twenty-four Italian ICUs from February 2020 to May 2020. PATIENTS: Mechanically ventilated ICU patients with COVID-19-induced respiratory failure. INTERVENTION: The transition period from CMV to PSV was evaluated. We defined it as "failure of assisted breathing" if the patient returned to CMV within the first 72 hours. MEASUREMENTS AND MAIN RESULTS: Of 1260 ICU patients screened, 514 were included. Three hundred fifty-seven patients successfully made the transition to PSV, while 157 failed. Pao2/Fio2 ratio before the transition emerged as an independent predictor of a successful shift (odds ratio 1.00; 95% CI, 0.99-1.00; p = 0.003). Patients in the success group displayed a better trend in Pao2/Fio2, Paco2, plateau and peak pressure, and pH level. Subjects in the failure group exhibited higher ICU mortality (hazard ratio 2.08; 95% CI, 1.42-3.06; p < 0.001), an extended ICU length of stay (successful vs. failure 21 ± 14 vs. 27 ± 17 d; p < 0.001) and a longer duration of mechanical ventilation (19 ± 18 vs. 24 ± 17 d, p = 0.04). CONCLUSIONS: Our study emphasizes that the Pao2/Fio2 ratio was the sole independent factor associated with a failed transition from CMV to PSV. The unsuccessful transition was associated with worse outcomes.
RESUMO
Purpose: This study aimed to investigate the effects of inspired oxygen fraction (FiO2) and positive end-expiratory pressure (PEEP) on gas exchange in mechanically ventilated patients with COVID-19. Methods: Two FiO2 (100%, 40%) were tested at 3 decreasing levels of PEEP (15, 10, and 5â cmH2O). At each FiO2 and PEEP, gas exchange, respiratory mechanics, hemodynamics, and the distribution of ventilation and perfusion were assessed with electrical impedance tomography. The impact of FiO2 on the intrapulmonary shunt (delta shunt) was analyzed as the difference between the calculated shunt at FiO2 100% (shunt) and venous admixture at FiO2 40% (venous admixture). Results: Fourteen patients were studied. Decreasing PEEP from 15 to 10â cmH2O did not change shunt (24 [21-28] vs 27 [24-29]%) or venous admixture (18 [15-26] vs 23 [18-34]%) while partial pressure of arterial oxygen (FiO2 100%) was higher at PEEP 15 (262 [198-338] vs 256 [147-315] mmHg; P < .05). Instead when PEEP was decreased from 10 to 5â cmH2O, shunt increased to 36 [30-39]% (P < .05) and venous admixture increased to 33 [30-43]% (P < .05) and partial pressure of arterial oxygen (100%) decreased to 109 [76-177] mmHg (P < .05). At PEEP 15, administration of 100% FiO2 resulted in a shunt greater than venous admixture at 40% FiO2, ((24 [21-28] vs 18 [15-26]%, P = .005), delta shunt 5.5% (2.3-8.8)). Compared to PEEP 10, PEEP of 5 and 15â cmH2O resulted in decreased global and pixel-level compliance. Cardiac output at FiO2 100% resulted higher at PEEP 5 (5.4 [4.4-6.5]) compared to PEEP 10 (4.8 [4.1-5.5], P < .05) and PEEP 15â cmH2O (4.7 [4.5-5.4], P < .05). Conclusion: In this study, PEEP of 15â cmH2O, despite resulting in the highest oxygenation, was associated with overdistension. PEEP of 5â cmH2O was associated with increased shunt and alveolar collapse. Administration of 100% FiO2 was associated with an increase in intrapulmonary shunt in the setting of high PEEP. Trial registration: NCT05132933.
Assuntos
COVID-19 , Pneumopatias , Síndrome do Desconforto Respiratório , Humanos , Respiração Artificial , Síndrome do Desconforto Respiratório/terapia , COVID-19/complicações , COVID-19/terapia , Pulmão/diagnóstico por imagem , Respiração com Pressão Positiva/métodos , Mecânica Respiratória , OxigênioRESUMO
Importance: Data on the association of COVID-19 vaccination with intensive care unit (ICU) admission and outcomes of patients with SARS-CoV-2-related pneumonia are scarce. Objective: To evaluate whether COVID-19 vaccination is associated with preventing ICU admission for COVID-19 pneumonia and to compare baseline characteristics and outcomes of vaccinated and unvaccinated patients admitted to an ICU. Design, Setting, and Participants: This retrospective cohort study on regional data sets reports: (1) daily number of administered vaccines and (2) data of all consecutive patients admitted to an ICU in Lombardy, Italy, from August 1 to December 15, 2021 (Delta variant predominant). Vaccinated patients received either mRNA vaccines (BNT162b2 or mRNA-1273) or adenoviral vector vaccines (ChAdOx1-S or Ad26.COV2). Incident rate ratios (IRRs) were computed from August 1, 2021, to January 31, 2022; ICU and baseline characteristics and outcomes of vaccinated and unvaccinated patients admitted to an ICU were analyzed from August 1 to December 15, 2021. Exposures: COVID-19 vaccination status (no vaccination, mRNA vaccine, adenoviral vector vaccine). Main Outcomes and Measures: The incidence IRR of ICU admission was evaluated, comparing vaccinated people with unvaccinated, adjusted for age and sex. The baseline characteristics at ICU admission of vaccinated and unvaccinated patients were investigated. The association between vaccination status at ICU admission and mortality at ICU and hospital discharge were also studied, adjusting for possible confounders. Results: Among the 10â¯107â¯674 inhabitants of Lombardy, Italy, at the time of this study, the median [IQR] age was 48 [28-64] years and 5â¯154â¯914 (51.0%) were female. Of the 7â¯863â¯417 individuals who were vaccinated (median [IQR] age: 53 [33-68] years; 4â¯010â¯343 [51.4%] female), 6â¯251â¯417 (79.5%) received an mRNA vaccine, 550â¯439 (7.0%) received an adenoviral vector vaccine, and 1â¯061â¯561 (13.5%) received a mix of vaccines and 4â¯497â¯875 (57.2%) were boosted. Compared with unvaccinated people, IRR of individuals who received an mRNA vaccine within 120 days from the last dose was 0.03 (95% CI, 0.03-0.04; P < .001), whereas IRR of individuals who received an adenoviral vector vaccine after 120 days was 0.21 (95% CI, 0.19-0.24; P < .001). There were 553 patients admitted to an ICU for COVID-19 pneumonia during the study period: 139 patients (25.1%) were vaccinated and 414 (74.9%) were unvaccinated. Compared with unvaccinated patients, vaccinated patients were older (median [IQR]: 72 [66-76] vs 60 [51-69] years; P < .001), primarily male individuals (110 patients [79.1%] vs 252 patients [60.9%]; P < .001), with more comorbidities (median [IQR]: 2 [1-3] vs 0 [0-1] comorbidities; P < .001) and had higher ratio of arterial partial pressure of oxygen (Pao2) and fraction of inspiratory oxygen (FiO2) at ICU admission (median [IQR]: 138 [100-180] vs 120 [90-158] mm Hg; P = .007). Factors associated with ICU and hospital mortality were higher age, premorbid heart disease, lower Pao2/FiO2 at ICU admission, and female sex (this factor only for ICU mortality). ICU and hospital mortality were similar between vaccinated and unvaccinated patients. Conclusions and Relevance: In this cohort study, mRNA and adenoviral vector vaccines were associated with significantly lower risk of ICU admission for COVID-19 pneumonia. ICU and hospital mortality were not associated with vaccinated status. These findings suggest a substantial reduction of the risk of developing COVID-19-related severe acute respiratory failure requiring ICU admission among vaccinated people.
Assuntos
COVID-19 , Pneumonia , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Estado Terminal/terapia , Vacinas contra COVID-19 , Estudos Retrospectivos , Estudos de Coortes , Vacina BNT162 , Unidades de Terapia Intensiva , Pneumonia/epidemiologia , Oxigênio , Vacinas de mRNARESUMO
Veno-venous extracorporeal membrane oxygenation (vv-ECMO) represents one of the most advanced respiratory support for patients suffering from severe acute respiratory distress syndrome. During vv-ECMO a certain amount of extracorporeal oxygenated blood can flow back from the reinfusion into the drainage cannula without delivering oxygen to the patient. Detection and quantification of this dynamic phenomenon, defined recirculation, are critical to optimize the ECMO efficiency. Our study aimed to measure the recirculation fraction (RF) using a thermodilution technique. We built an in vitro circuit to simulate patients undergoing vv-ECMO (ECMO flow: 1.5, 3, and 4.5 L/min) with different cardiac output, using a recirculation bridge to achieve several known RFs (from 0% to 50%). The RF, computed as the ratio of the area under temperature-time curves (AUC) of the drainage and reinfusion, was significantly related to the set RF (AUC ratio (%) = 0.979 × RF (%) + 0.277%, p < 0.0001), but it was not dependent on tested ECMO and cardiac output values. A Bland-Altman analysis showed an AUC ratio bias (precision) of -0.21% for the overall data. Test-retest reliability showed an intraclass correlation coefficient of 0.993. This study proved the technical feasibility and computation validity of the applied thermodilution technique in computing vv-ECMO RF.
Assuntos
Oxigenação por Membrana Extracorpórea , Síndrome do Desconforto Respiratório , Cânula , Oxigenação por Membrana Extracorpórea/efeitos adversos , Humanos , Reprodutibilidade dos Testes , Síndrome do Desconforto Respiratório/terapia , TermodiluiçãoRESUMO
During the COVID-19 pandemic, a shortage of mechanical ventilators was reported and ventilator sharing between patients was proposed as an ultimate solution. Two lung simulators were ventilated by one anesthesia machine connected through two respiratory circuits and T-pieces. Five different combinations of compliances (30-50 mL × cmH2O-1) and resistances (5-20 cmH2O × L-1 × s-1) were tested. The ventilation setting was: pressure-controlled ventilation, positive end-expiratory pressure 15 cmH2O, inspiratory pressure 10 cmH2O, respiratory rate 20 bpm. Pressures and flows from all the circuit sections have been recorded and analyzed. Simulated patients with equal compliance and resistance received similar ventilation. Compliance reduction from 50 to 30 mL × cmH2O-1 decreased the tidal volume (VT) by 32% (418 ± 49 vs. 285 ± 17 mL). The resistance increase from 5 to 20 cmH2O × L-1 × s-1 decreased VT by 22% (425 ± 69 vs. 331 ± 51 mL). The maximal alveolar pressure was lower at higher compliance and resistance values and decreased linearly with the time constant (r² = 0.80, p < 0.001). The minimum alveolar pressure ranged from 15.5 ± 0.04 to 16.57 ± 0.04 cmH2O. Cross-flows between the simulated patients have been recorded in all the tested combinations, during both the inspiratory and expiratory phases. The simultaneous ventilation of two patients with one ventilator may be unable to match individual patient's needs and has a high risk of cross-interference.
RESUMO
PURPOSE: To evaluate the daily values and trends over time of relevant clinical, ventilatory and laboratory parameters during the intensive care unit (ICU) stay and their association with outcome in critically ill patients with coronavirus disease 19 (COVID-19). METHODS: In this retrospective-prospective multicentric study, we enrolled COVID-19 patients admitted to Italian ICUs from February 22 to May 31, 2020. Clinical data were daily recorded. The time course of 18 clinical parameters was evaluated by a polynomial maximum likelihood multilevel linear regression model, while a full joint modeling was fit to study the association with ICU outcome. RESULTS: 1260 consecutive critically ill patients with COVID-19 admitted in 24 ICUs were enrolled. 78% were male with a median age of 63 [55-69] years. At ICU admission, the median ratio of arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2) was 122 [89-175] mmHg. 79% of patients underwent invasive mechanical ventilation. The overall mortality was 34%. Both the daily values and trends of respiratory system compliance, PaO2/FiO2, driving pressure, arterial carbon dioxide partial pressure, creatinine, C-reactive protein, ferritin, neutrophil, neutrophil-lymphocyte ratio, and platelets were associated with survival, while for lactate, pH, bilirubin, lymphocyte, and urea only the daily values were associated with survival. The trends of PaO2/FiO2, respiratory system compliance, driving pressure, creatinine, ferritin, and C-reactive protein showed a higher association with survival compared to the daily values. CONCLUSION: Daily values or trends over time of parameters associated with acute organ dysfunction, acid-base derangement, coagulation impairment, or systemic inflammation were associated with patient survival.
Assuntos
COVID-19 , Estado Terminal , Idoso , Humanos , Unidades de Terapia Intensiva , Itália , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Respiração Artificial , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2RESUMO
Extracorporeal carbon dioxide removal (ECCO2R) is a promising strategy to manage acute respiratory failure. We hypothesized that ECCO2R could be enhanced by ventilating the membrane lung with a sodium hydroxide (NaOH) solution with high CO2 absorbing capacity. A computed mathematical model was implemented to assess NaOH-CO2 interactions. Subsequently, we compared NaOH infusion, named "alkaline liquid ventilation", to conventional oxygen sweeping flows. We built an extracorporeal circuit with two polypropylene membrane lungs, one to remove CO2 and the other to maintain a constant PCO2 (60 ± 2 mmHg). The circuit was primed with swine blood. Blood flow was 500 mL × min-1. After testing the safety and feasibility of increasing concentrations of aqueous NaOH (up to 100 mmol × L-1), the CO2 removal capacity of sweeping oxygen was compared to that of 100 mmol × L-1 NaOH. We performed six experiments to randomly test four sweep flows (100, 250, 500, 1000 mL × min-1) for each fluid plus 10 L × min-1 oxygen. Alkaline liquid ventilation proved to be feasible and safe. No damages or hemolysis were detected. NaOH showed higher CO2 removal capacity compared to oxygen for flows up to 1 L × min-1. However, the highest CO2 extraction power exerted by NaOH was comparable to that of 10 L × min-1 oxygen. Further studies with dedicated devices are required to exploit potential clinical applications of alkaline liquid ventilation.
RESUMO
Patients with sepsis have typically reduced concentrations of hemoglobin and albumin, the major components of noncarbonic buffer power (ß). This could expose patients to high pH variations during acid-base disorders. The objective of this study is to compare, in vitro, noncarbonic ß of patients with sepsis with that of healthy volunteers, and evaluate its distinct components. Whole blood and isolated plasma of 18 patients with sepsis and 18 controls were equilibrated with different CO2 mixtures. Blood gases, pH, and electrolytes were measured. Noncarbonic ß and noncarbonic ß due to variations in strong ion difference (ßSID) were calculated for whole blood. Noncarbonic ß and noncarbonic ß normalized for albumin concentrations (ßNORM) were calculated for isolated plasma. Representative values at pH = 7.40 were compared. Albumin proteoforms were evaluated via two-dimensional electrophoresis. Hemoglobin and albumin concentrations were significantly lower in patients with sepsis. Patients with sepsis had lower noncarbonic ß both of whole blood (22.0 ± 1.9 vs. 31.6 ± 2.1 mmol/L, P < 0.01) and plasma (0.5 ± 1.0 vs. 3.7 ± 0.8 mmol/L, P < 0.01). Noncarbonic ßSID was lower in patients (16.8 ± 1.9 vs. 24.4 ± 1.9 mmol/L, P < 0.01) and strongly correlated with hemoglobin concentration (r = 0.94, P < 0.01). Noncarbonic ßNORM was lower in patients [0.01 (-0.01 to 0.04) vs. 0.08 (0.06-0.09) mmol/g, P < 0.01]. Patients with sepsis and controls showed different amounts of albumin proteoforms. Patients with sepsis are exposed to higher pH variations for any given change in CO2 due to lower concentrations of noncarbonic buffers and, possibly, an altered buffering function of albumin. In both patients with sepsis and healthy controls, electrolyte shifts are the major buffering mechanism during respiratory acid-base disorders.NEW & NOTEWORTHY Patients with sepsis are poorly protected against acute respiratory acid-base derangements due to a lower noncarbonic buffer power, which is caused both by a reduction in the major noncarbonic buffers, i.e. hemoglobin and albumin, and by a reduced buffering capacity of albumin. Electrolyte shifts from and to the red blood cells determining acute variations in strong ion difference are the major buffering mechanism during acute respiratory acid-base disorders.
Assuntos
Desequilíbrio Ácido-Base , Sepse , Equilíbrio Ácido-Base , Ácidos , Gasometria , Humanos , Concentração de Íons de HidrogênioRESUMO
BACKGROUND: Limited data are available on the use of prone position in intubated, invasively ventilated patients with Coronavirus disease-19 (COVID-19). Aim of this study is to investigate the use and effect of prone position in this population during the first 2020 pandemic wave. METHODS: Retrospective, multicentre, national cohort study conducted between February 24 and June 14, 2020, in 24 Italian Intensive Care Units (ICU) on adult patients needing invasive mechanical ventilation for respiratory failure caused by COVID-19. Clinical data were collected on the day of ICU admission. Information regarding the use of prone position was collected daily. Follow-up for patient outcomes was performed on July 15, 2020. The respiratory effects of the first prone position were studied in a subset of 78 patients. Patients were classified as Oxygen Responders if the PaO2/FiO2 ratio increased ≥ 20 mmHg during prone position and as Carbon Dioxide Responders if the ventilatory ratio was reduced during prone position. RESULTS: Of 1057 included patients, mild, moderate and severe ARDS was present in 15, 50 and 35% of patients, respectively, and had a resulting mortality of 25, 33 and 41%. Prone position was applied in 61% of the patients. Patients placed prone had a more severe disease and died significantly more (45% vs. 33%, p < 0.001). Overall, prone position induced a significant increase in PaO2/FiO2 ratio, while no change in respiratory system compliance or ventilatory ratio was observed. Seventy-eight % of the subset of 78 patients were Oxygen Responders. Non-Responders had a more severe respiratory failure and died more often in the ICU (65% vs. 38%, p = 0.047). Forty-seven % of patients were defined as Carbon Dioxide Responders. These patients were older and had more comorbidities; however, no difference in terms of ICU mortality was observed (51% vs. 37%, p = 0.189 for Carbon Dioxide Responders and Non-Responders, respectively). CONCLUSIONS: During the COVID-19 pandemic, prone position has been widely adopted to treat mechanically ventilated patients with respiratory failure. The majority of patients improved their oxygenation during prone position, most likely due to a better ventilation perfusion matching. TRIAL REGISTRATION: clinicaltrials.gov number: NCT04388670.
Assuntos
COVID-19/terapia , Cuidados Críticos/normas , Intubação/normas , Posicionamento do Paciente/normas , Decúbito Ventral , Respiração Artificial/normas , Decúbito Dorsal , Idoso , Estudos de Coortes , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Guias de Prática Clínica como Assunto , Estudos RetrospectivosRESUMO
BACKGROUND: Bilateral lung transplantation results in pulmonary vagal denervation, which potentially alters respiratory drive, volume-feedback, and ventilatory pattern. We hypothesised that Neurally Adjusted Ventilatory Assist (NAVA) ventilation, which is driven by diaphragm electrical activity (EAdi), would reveal whether vagally mediated pulmonary-volume feedback is preserved in the early phases after bilateral lung transplantation. METHODS: We prospectively studied bilateral lung transplant recipients within 48 h of surgery. Subjects were ventilated with NAVA and randomised to receive 3 ventilatory modes (baseline NAVA, 50%, and 150% of baseline NAVA values) and 2 PEEP levels (6 and 12 cm H2O). We recorded airway pressure, flow, and EAdi. RESULTS: We studied 30 subjects (37% female; age: 37 (27-56) yr), of whom 19 (63%) had stable EAdi. The baseline NAVA level was 0.6 (0.2-1.0) cm H2O µV-1. Tripling NAVA level increased the ventilatory peak pressure over PEEP by 6.3 (1.8), 7.6 (2.4), and 8.7 (3.2) cm H2O, at 50%, 100%, and 150% of baseline NAVA level, respectively (P<0.001). EAdi peak decreased by 10.1 (9.0), 9.5 (9.4) and 8.8 µV (8.7) (P<0.001), accompanied by small increases in tidal volume, 8.3 (3.0), 8.7 (3.6), and 8.9 (3.3) ml kg-1 donor's predicted body weight at 50%, 100%, and 150% of baseline NAVA levels, respectively (P<0.001). Doubling PEEP did not affect tidal volume. CONCLUSIONS: NAVA ventilation was feasible in the majority of patients during the early postoperative period after bilateral lung transplantation. Despite surgical vagotomy distal to the bronchial anastomoses, bilateral lung transplant recipients maintained an unmodified respiratory pattern in response to variations in ventilatory assistance and PEEP. CLINICAL TRIAL REGISTRATION: NCT03367221.
Assuntos
Retroalimentação , Suporte Ventilatório Interativo/métodos , Transplante de Pulmão/métodos , Respiração com Pressão Positiva/métodos , Cuidados Pós-Operatórios/métodos , Volume de Ventilação Pulmonar/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Ventilação Pulmonar/fisiologia , Desmame do Respirador/métodosRESUMO
OBJECTIVES: Extracorporeal respiratory support, including low blood flow systems providing mainly extracorporeal CO2 removal, are increasingly applied in clinical practice. Gas exchange physiology during extracorporeal respiratory support is complex and differs between full extracorporeal membrane oxygenation and extracorporeal CO2 removal. Aim of the present article is to review pathophysiological aspects which are relevant for the understanding of hypoxemia development during extracorporeal CO2 removal. We will describe the mathematical and physiologic background underlying changes in respiratory quotient and alveolar oxygen tension during venovenous extracorporeal gas exchange and highlight the clinical implications. DESIGN: Theoretical analysis of venovenous extracorporeal gas exchange. SETTING: Italian university research hospital. PATIENTS: None. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: While the effect of extracorporeal CO2 removal on the respiratory quotient of the native lung has long been known, the role of extracorporeal oxygenation in dictating changes in the respiratory quotient has been less addressed. Indeed, both extracorporeal CO2 removal and extracorporeal oxygen delivery affect the respiratory quotient of the native lung and thus influence the alveolar PO2. Indeed, for the same amount of extracorporeal CO2 extraction, it is possible to reduce the FIO2, reduce the risk of absorption atelectasis, and maintain the same alveolar PO2, by increasing the extracorporeal oxygen delivery. CONCLUSIONS: Worsening of hypoxemia is frequent during low-flow extracorporeal CO2 removal combined with ultraprotective mechanical ventilation. In this context, increasing extracorporeal oxygen delivery, increases the respiratory quotient of the native lung and could reduce both the occurrence of alveolar hypoxia and absorption atelectasis, thus optimizing the residual lung function.
Assuntos
Dióxido de Carbono/metabolismo , Oxigenação por Membrana Extracorpórea/métodos , Hipóxia/prevenção & controle , Consumo de Oxigênio , Dióxido de Carbono/sangue , Oxigenação por Membrana Extracorpórea/efeitos adversos , Humanos , Hipóxia/fisiopatologia , Modelos Biológicos , Consumo de Oxigênio/fisiologiaRESUMO
Importance: Many patients with coronavirus disease 2019 (COVID-19) are critically ill and require care in the intensive care unit (ICU). Objective: To evaluate the independent risk factors associated with mortality of patients with COVID-19 requiring treatment in ICUs in the Lombardy region of Italy. Design, Setting, and Participants: This retrospective, observational cohort study included 3988 consecutive critically ill patients with laboratory-confirmed COVID-19 referred for ICU admission to the coordinating center (Fondazione IRCCS [Istituto di Ricovero e Cura a Carattere Scientifico] Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy) of the COVID-19 Lombardy ICU Network from February 20 to April 22, 2020. Infection with severe acute respiratory syndrome coronavirus 2 was confirmed by real-time reverse transcriptase-polymerase chain reaction assay of nasopharyngeal swabs. Follow-up was completed on May 30, 2020. Exposures: Baseline characteristics, comorbidities, long-term medications, and ventilatory support at ICU admission. Main Outcomes and Measures: Time to death in days from ICU admission to hospital discharge. The independent risk factors associated with mortality were evaluated with a multivariable Cox proportional hazards regression. Results: Of the 3988 patients included in this cohort study, the median age was 63 (interquartile range [IQR] 56-69) years; 3188 (79.9%; 95% CI, 78.7%-81.1%) were men, and 1998 of 3300 (60.5%; 95% CI, 58.9%-62.2%) had at least 1 comorbidity. At ICU admission, 2929 patients (87.3%; 95% CI, 86.1%-88.4%) required invasive mechanical ventilation (IMV). The median follow-up was 44 (95% CI, 40-47; IQR, 11-69; range, 0-100) days; median time from symptoms onset to ICU admission was 10 (95% CI, 9-10; IQR, 6-14) days; median length of ICU stay was 12 (95% CI, 12-13; IQR, 6-21) days; and median length of IMV was 10 (95% CI, 10-11; IQR, 6-17) days. Cumulative observation time was 164â¯305 patient-days. Hospital and ICU mortality rates were 12 (95% CI, 11-12) and 27 (95% CI, 26-29) per 1000 patients-days, respectively. In the subgroup of the first 1715 patients, as of May 30, 2020, 865 (50.4%) had been discharged from the ICU, 836 (48.7%) had died in the ICU, and 14 (0.8%) were still in the ICU; overall, 915 patients (53.4%) died in the hospital. Independent risk factors associated with mortality included older age (hazard ratio [HR], 1.75; 95% CI, 1.60-1.92), male sex (HR, 1.57; 95% CI, 1.31-1.88), high fraction of inspired oxygen (Fio2) (HR, 1.14; 95% CI, 1.10-1.19), high positive end-expiratory pressure (HR, 1.04; 95% CI, 1.01-1.06) or low Pao2:Fio2 ratio (HR, 0.80; 95% CI, 0.74-0.87) on ICU admission, and history of chronic obstructive pulmonary disease (HR, 1.68; 95% CI, 1.28-2.19), hypercholesterolemia (HR, 1.25; 95% CI, 1.02-1.52), and type 2 diabetes (HR, 1.18; 95% CI, 1.01-1.39). No medication was independently associated with mortality (angiotensin-converting enzyme inhibitors HR, 1.17; 95% CI, 0.97-1.42; angiotensin receptor blockers HR, 1.05; 95% CI, 0.85-1.29). Conclusions and Relevance: In this retrospective cohort study of critically ill patients admitted to ICUs in Lombardy, Italy, with laboratory-confirmed COVID-19, most patients required IMV. The mortality rate and absolute mortality were high.
Assuntos
Infecções por Coronavirus , Estado Terminal , Hospitalização/estatística & dados numéricos , Unidades de Terapia Intensiva/estatística & dados numéricos , Pandemias , Pneumonia Viral , Respiração Artificial/estatística & dados numéricos , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Vacinas contra COVID-19 , Técnicas de Laboratório Clínico/métodos , Técnicas de Laboratório Clínico/estatística & dados numéricos , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/terapia , Estado Terminal/mortalidade , Estado Terminal/terapia , Feminino , Mortalidade Hospitalar , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Mortalidade , Pneumonia Viral/mortalidade , Pneumonia Viral/terapia , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2RESUMO
In patients undergoing extracorporeal membrane oxygenation (ECMO) for acute respiratory distress syndrome (ARDS), it is unknown which clinical physiologic variables should be monitored to follow the evolution of lung injury and extrapulmonary organ dysfunction and to differentiate patients according to their course. We analyzed the time-course of prospectively collected clinical physiologic variables in 83 consecutive ARDS patients undergoing ECMO at a single referral center. Selected variables-including ventilator settings, respiratory system compliance, intrapulmonary shunt, arterial blood gases, central hemodynamics, and sequential organ failure assessment (SOFA) score-were compared according to outcome at time-points corresponding to 0%, 25%, 50%, 75%, and 100% of the entire ECMO duration and daily during the first 7 days. A logistic regression analysis was performed to identify changes between ECMO start and end that independently predicted hospital mortality. Tidal volume, intrapulmonary shunt, arterial lactate, and SOFA score differentiated survivors and nonsurvivors early during the first 7 days and over the entire ECMO duration. Respiratory system compliance, PaO2/FiO2 ratio, arterial pH, and mean pulmonary arterial pressure showed distinct temporal course according to outcome over the entire ECMO duration. Lack of improvement of SOFA score independently predicted hospital mortality. In ARDS patients on ECMO, temporal trends of specific physiologic parameters differentiate survivors from non-survivors and could be used to monitor the evolution of lung injury. Progressive worsening of extrapulmonary organ dysfunction is associated with worse outcome.
Assuntos
Oxigenação por Membrana Extracorpórea/métodos , Síndrome do Desconforto Respiratório/fisiopatologia , Síndrome do Desconforto Respiratório/terapia , Adulto , Gasometria , Progressão da Doença , Oxigenação por Membrana Extracorpórea/mortalidade , Feminino , Mortalidade Hospitalar , Humanos , Masculino , Pessoa de Meia-Idade , Escores de Disfunção Orgânica , Síndrome do Desconforto Respiratório/mortalidade , Estudos Retrospectivos , Fatores de TempoRESUMO
PURPOSE OF REVIEW: Extracorporeal support allows ultraprotective controlled and assisted ventilation, which can prevent lung and diaphragm injury. We focused on most recent findings in the application of extracorporeal support to achieve lung protection and diaphragm- protection, as well as on relevant monitoring. RECENT FINDINGS: A recent randomized trial comparing the efficacy of extracorporeal support as a rescue therapy to conventional protective mechanical ventilation was stopped for futility but post hoc analyses suggested that extracorporeal support is beneficial for patients with very severe acute respiratory distress syndrome. However, the optimal ventilation settings during extracorporeal support are still debated. It is conceivable that they should enable the highest amount of CO2 removal with lowest mechanical power.Extracorporeal CO2 removal can minimize acidosis and enable the use of ultra-protective lung ventilation strategies when hypoxemia is not a major issue. Moreover, it can protect lung and diaphragm function during assisted ventilation through control of the respiratory effort.Lung mechanics, gas exchange, diaphragm electrical activity, ultrasound, electrical impedance tomography could be integrated into clinical management to define lung and diaphragm protection and guide personalized ventilation settings. SUMMARY: Technological improvement and the latest evidence indicate that extracorporeal support may be an effective tool for lung and diaphragm protection.
Assuntos
Diafragma , Oxigenação por Membrana Extracorpórea , Respiração Artificial , Síndrome do Desconforto Respiratório , Diafragma/fisiopatologia , Humanos , Pulmão , Respiração Artificial/efeitos adversos , Síndrome do Desconforto Respiratório/terapiaRESUMO
The ROX (Respiratory rate-OXygenation) index is an early predictor of failure of nasal high flow (NHF), with lower values indicating higher risk of intubation. We measured the ROX index at set flow rate of 30 and 60â¯l/min in 57 hypoxemic patients on NHF. Patients with increased ROX index values at higher flow (nâ¯=â¯40) showed worse baseline oxygenation, higher respiratory rate and lower ROX index in comparison to patients with unchanged or decreased ROX index values (nâ¯=â¯17). The ROX index variation between flows was correlated with the change in end expiratory lung volume. Set flow rate during NHF might impact the ROX index value.
Assuntos
Hipóxia/prevenção & controle , Hipóxia/fisiopatologia , Ventilação não Invasiva/métodos , Insuficiência Respiratória/fisiopatologia , Insuficiência Respiratória/terapia , Idoso , Gasometria , Estudos Cross-Over , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nariz , Oxigenoterapia , Estudos Prospectivos , Insuficiência Respiratória/etiologia , Taxa RespiratóriaRESUMO
BACKGROUND: Endotracheal suctioning is mandatory to prevent complications caused by the retention of tracheal secretions. Endotracheal suctioning is often performed late, when patients show signs of respiratory and hemodynamic alterations. We conceived a prototype device that, when synchronized with the ventilator, automatically removes secretions collected below the endotracheal tube (ETT) cuff, thus avoiding endotracheal suctioning. The aim of our investigation was to assess the performance of this novel prototype in vitro. METHODS: Three studies were performed to examine the characteristics of the prototype. We tested device's ability to generate an effective artificial cough flow (artificial cough maneuver) > 1 L/s by rapidly deflating the ETT cuff within the time of a sustained inflation (at 30 and at 40 cm H2O) (cough flow study). We also tested the prototype's ability to remove the fluid positioned below the ETT cuff using saline dye (fluid removal study), and to prevent the aspiration of saline dye from above the ETT cuff during the deflation phase of the ETT cuff (aspiration study). The trachea model was positioned at 45° in the aspiration study, and horizontally in the other two studies. RESULTS: In the cough flow study, the prototype provided an effective artificial cough maneuver, with a mean ± SD of 1.78 ± 0.19 L/s (range, 1.42-2.14 L/s). The tracheal pressure after ETT cuff deflation never decreased below the PEEP level. In the fluid removal study, the prototype cleared the fluid from below the ETT cuff and the experimental trachea. No fluid was aspirated from the area above the ETT cuff toward the lower airways. CONCLUSIONS: We conceived an system capable of automatically expelling fluid from below the ETT cuff outside an experimental trachea by generating an artificial cough maneuver. This system may decrease the use of endotracheal suctioning and its complications. Future in vivo studies are needed to confirm this first in vitro evaluation.