Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Cancer Genomics Proteomics ; 21(3): 238-251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38670588

RESUMO

BACKGROUND/AIM: Dynamic DNA sequences (i.e. sequences capable of forming hairpins, G-quadruplexes, i-motifs, and triple helices) can cause replication stress and associated mutations. One example of such a sequence occurs in the RACK7 gene in human DNA. Since this sequence forms i-motif structures at neutral pH that cause replication stress and result in spontaneous deletions in prostate cancer cells, our initial aim was to determine its potential utility as a biomarker of prostate cancer. MATERIALS AND METHODS: We cloned and sequenced the region in RACK7 where i-motif deletions often occur in DNA obtained from eight individuals. Expressed prostatic secretions were obtained from three individuals with a positive biopsy for prostate cancer and two with individuals with a negative biopsy for prostate cancer. Peripheral blood specimens were obtained from two control healthy bone marrow donors and a marrow specimen was obtained from a third healthy marrow donor. Follow-up computer searches of the genomes of 74 mammalian species available at the NCBI ftp site or frequencies of 6 dynamic sequences known to produce mutations or replication stress using a program written in Mathematica were subsequently performed. RESULTS: Deletions were found in RACK7 in specimens from both older normal adults, as well as specimens from older patients with cancer, but not in the youngest normal adult. The deletions appeared to show a weak trend to increasing frequency with patient age. This suggested that endogenous mutations associated with dynamic sequences might accumulate during aging and might serve as biomarkers of biological age rather than direct biomarkers of cancer. To test that hypothesis, we asked whether or not the genomic frequencies of several dynamic sequences known to produce replication stress or mutations in human DNA were inversely correlated with maximum lifespan in mammals. CONCLUSION: Our results confirm this correlation for six dynamic sequences in 74 mammalian genomes studied, thereby suggesting that spontaneously induced replication stress and mutations linked to dynamic sequence frequency may limit lifespan by limiting genome stability.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Animais , Idoso , Pessoa de Meia-Idade , Longevidade/genética , Adulto , Mamíferos/genética , Mutação , Receptores de Superfície Celular/genética
2.
Nat Commun ; 14(1): 8373, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102140

RESUMO

Rhabdomyosarcomas (RMS) are pediatric mesenchymal-derived malignancies encompassing PAX3/7-FOXO1 Fusion Positive (FP)-RMS, and Fusion Negative (FN)-RMS with frequent RAS pathway mutations. RMS express the master myogenic transcription factor MYOD that, whilst essential for survival, cannot support differentiation. Here we discover SKP2, an oncogenic E3-ubiquitin ligase, as a critical pro-tumorigenic driver in FN-RMS. We show that SKP2 is overexpressed in RMS through the binding of MYOD to an intronic enhancer. SKP2 in FN-RMS promotes cell cycle progression and prevents differentiation by directly targeting p27Kip1 and p57Kip2, respectively. SKP2 depletion unlocks a partly MYOD-dependent myogenic transcriptional program and strongly affects stemness and tumorigenic features and prevents in vivo tumor growth. These effects are mirrored by the investigational NEDDylation inhibitor MLN4924. Results demonstrate a crucial crosstalk between transcriptional and post-translational mechanisms through the MYOD-SKP2 axis that contributes to tumorigenesis in FN-RMS. Finally, NEDDylation inhibition is identified as a potential therapeutic vulnerability in FN-RMS.


Assuntos
Rabdomiossarcoma , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Fatores de Transcrição , Transformação Celular Neoplásica , Diferenciação Celular
3.
Nat Commun ; 13(1): 7235, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36433940

RESUMO

Heterogeneity of endothelial cell (EC) populations reflects their diverse functions in maintaining tissue's homeostasis. However, their phenotypic, molecular, and functional properties are not entirely mapped. We use the Tie2-CreERT2;Rosa26-tdTomato reporter mouse to trace, profile, and cultivate primary ECs from different organs. As paradigm platform, we use this strategy to study bone marrow endothelial cells (BMECs). Single-cell mRNA sequencing of primary BMECs reveals that their diversity and native molecular signatures is transitorily preserved in an ex vivo culture that conserves key cell-to-cell microenvironment interactions. Macrophages sustain BMEC cellular diversity and expansion and preserve sinusoidal-like BMECs ex vivo. Endomucin expression discriminates BMECs in populations exhibiting mutually exclusive properties and distinct sinusoidal/arterial and tip/stalk signatures. In contrast to arterial-like, sinusoidal-like BMECs are short-lived, form 2D-networks, contribute to in vivo angiogenesis, and support hematopoietic stem/progenitor cells in vitro. This platform can be extended to other organs' ECs to decode mechanistic information and explore therapeutics.


Assuntos
Medula Óssea , Células Endoteliais , Camundongos , Animais , Células Endoteliais/fisiologia , Transcriptoma , Endotélio , Células-Tronco Hematopoéticas/metabolismo
4.
Sci Adv ; 8(16): eabj1664, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35452289

RESUMO

MicroRNAs (miRNAs) have been shown to hold prognostic value in acute myeloid leukemia (AML); however, the temporal dynamics of miRNA expression in AML are poorly understood. Using serial samples from a mouse model of AML to generate time-series miRNA sequencing data, we are the first to show that the miRNA transcriptome undergoes state-transition during AML initiation and progression. We modeled AML state-transition as a particle undergoing Brownian motion in a quasi-potential and validated the AML state-space and state-transition model to accurately predict time to AML in an independent cohort of mice. The critical points of the model provided a framework to align samples from mice that developed AML at different rates. Our mathematical approach allowed discovery of dynamic processes involved during AML development and, if translated to humans, has the potential to predict an individual's disease trajectory.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Animais , Estudos de Coortes , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico , Transcriptoma
5.
Clin Transl Med ; 11(10): e610, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709739

RESUMO

BACKGROUND: Myelodysplastic syndrome (MDS) arises from a rare population of aberrant hematopoietic stem and progenitor cells (HSPCs). These cells are relatively quiescent and therefore treatment resistant. Understanding mechanisms underlying their maintenance is critical for effective MDS treatment. METHODS: We evaluated microRNA-126 (miR-126) levels in MDS patients' sample and in a NUP98-HOXD13 (NHD13) murine MDS model along with their normal controls and defined its role in MDS HSPCs' maintenance by inhibiting miR-126 expression in vitro and in vivo. Identification of miR-126 effectors was conducted using biotinylated miR-126 pulldown coupled with transcriptome analysis. We also tested the therapeutic activity of our anti-miR-126 oligodeoxynucleotide (miRisten) in human MDS xenografts and murine MDS models. RESULTS: miR-126 levels were higher in bone marrow mononuclear cells from MDS patients and NHD13 mice relative to their respective normal controls (P < 0.001). Genetic deletion of miR-126 in NHD13 mice decreased quiescence and self-renewal capacity of MDS HSPCs, and alleviated MDS symptoms of NHD13 mice. Ex vivo exposure to miRisten increased cell cycling, reduced colony-forming capacity, and enhanced apoptosis in human MDS HSPCs, but spared normal human HSPCs. In vivo miRisten administration partially reversed pancytopenia in NHD13 mice and blocked the leukemic transformation (combination group vs DAC group, P < 0.0001). Mechanistically, we identified the non-coding RNA PTTG3P as a novel miR-126 target. Lower PTTG3P levels were associated with a shorter overall survival in MDS patients. CONCLUSIONS: MiR-126 plays crucial roles in MDS HSPC maintenance. Therapeutic targeting of miR-126 is a potentially novel approach in MDS.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Células-Tronco/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos
6.
J Hematol Oncol ; 14(1): 122, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372909

RESUMO

BACKGROUND: During acute myeloid leukemia (AML) growth, the bone marrow (BM) niche acquires significant vascular changes that can be offset by therapeutic blast cytoreduction. The molecular mechanisms of this vascular plasticity remain to be fully elucidated. Herein, we report on the changes that occur in the vascular compartment of the FLT3-ITD+ AML BM niche pre and post treatment and their impact on leukemic stem cells (LSCs). METHODS: BM vasculature was evaluated in FLT3-ITD+ AML models (MllPTD/WT/Flt3ITD/ITD mouse and patient-derived xenograft) by 3D confocal imaging of long bones, calvarium vascular permeability assays, and flow cytometry analysis. Cytokine levels were measured by Luminex assay and miR-126 levels evaluated by Q-RT-PCR and miRNA staining. Wild-type (wt) and MllPTD/WT/Flt3ITD/ITD mice with endothelial cell (EC) miR-126 knockout or overexpression served as controls. The impact of treatment-induced BM vascular changes on LSC activity was evaluated by secondary transplantation of BM cells after administration of tyrosine kinase inhibitors (TKIs) to MllPTD/WT/Flt3ITD/ITD mice with/without either EC miR-126 KO or co-treatment with tumor necrosis factor alpha (TNFα) or anti-miR-126 miRisten. RESULTS: In the normal BM niche, CD31+Sca-1high ECs lining arterioles have miR-126 levels higher than CD31+Sca-1low ECs lining sinusoids. We noted that during FLT3-ITD+ AML growth, the BM niche lost arterioles and gained sinusoids. These changes were mediated by TNFα, a cytokine produced by AML blasts, which induced EC miR-126 downregulation and caused depletion of CD31+Sca-1high ECs and gain in CD31+Sca-1low ECs. Loss of miR-126high ECs led to a decreased EC miR-126 supply to LSCs, which then entered the cell cycle and promoted leukemia growth. Accordingly, antileukemic treatment with TKI decreased the BM blast-produced TNFα and increased miR-126high ECs and the EC miR-126 supply to LSCs. High miR-126 levels safeguarded LSCs, as shown by more severe disease in secondary transplanted mice. Conversely, EC miR-126 deprivation via genetic or pharmacological EC miR-126 knock-down prevented treatment-induced BM miR-126high EC expansion and in turn LSC protection. CONCLUSIONS: Treatment-induced CD31+Sca-1high EC re-vascularization of the leukemic BM niche may represent a LSC extrinsic mechanism of treatment resistance that can be overcome with therapeutic EC miR-126 deprivation.


Assuntos
Medula Óssea/patologia , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , Animais , Medula Óssea/irrigação sanguínea , Humanos , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima , Tirosina Quinase 3 Semelhante a fms/genética
7.
Leukemia ; 35(8): 2285-2298, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33589748

RESUMO

We report here on a novel pro-leukemogenic role of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) that interferes with microRNAs (miRNAs) biogenesis in acute myeloid leukemia (AML) blasts. We showed that FLT3-ITD interferes with the canonical biogenesis of intron-hosted miRNAs such as miR-126, by phosphorylating SPRED1 protein and inhibiting the "gatekeeper" Exportin 5 (XPO5)/RAN-GTP complex that regulates the nucleus-to-cytoplasm transport of pre-miRNAs for completion of maturation into mature miRNAs. Of note, despite the blockage of "canonical" miRNA biogenesis, miR-155 remains upregulated in FLT3-ITD+ AML blasts, suggesting activation of alternative mechanisms of miRNA biogenesis that circumvent the XPO5/RAN-GTP blockage. MiR-155, a BIC-155 long noncoding (lnc) RNA-hosted oncogenic miRNA, has previously been implicated in FLT3-ITD+ AML blast hyperproliferation. We showed that FLT3-ITD upregulates miR-155 by inhibiting DDX3X, a protein implicated in the splicing of lncRNAs, via p-AKT. Inhibition of DDX3X increases unspliced BIC-155 that is then shuttled by NXF1 from the nucleus to the cytoplasm, where it is processed into mature miR-155 by cytoplasmic DROSHA, thereby bypassing the XPO5/RAN-GTP blockage via "non-canonical" mechanisms of miRNA biogenesis.


Assuntos
Citoplasma/metabolismo , Leucemia Mieloide Aguda/patologia , MicroRNAs/biossíntese , Ribonuclease III/metabolismo , Sequências de Repetição em Tandem , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Ribonuclease III/genética , Células Tumorais Cultivadas , Tirosina Quinase 3 Semelhante a fms/genética
9.
Cancer Res ; 80(15): 3157-3169, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32414754

RESUMO

Temporal dynamics of gene expression inform cellular and molecular perturbations associated with disease development and evolution. Given the complexity of high-dimensional temporal genomic data, an analytic framework guided by a robust theory is needed to interpret time-sequential changes and to predict system dynamics. Here we model temporal dynamics of the transcriptome of peripheral blood mononuclear cells in a two-dimensional state-space representing states of health and leukemia using time-sequential bulk RNA-seq data from a murine model of acute myeloid leukemia (AML). The state-transition model identified critical points that accurately predict AML development and identifies stepwise transcriptomic perturbations that drive leukemia progression. The geometry of the transcriptome state-space provided a biological interpretation of gene dynamics, aligned gene signals that are not synchronized in time across mice, and allowed quantification of gene and pathway contributions to leukemia development. Our state-transition model synthesizes information from multiple cell types in the peripheral blood and identifies critical points in the transition from health to leukemia to guide interpretation of changes in the transcriptome as a whole to predict disease progression. SIGNIFICANCE: These findings apply the theory of state transitions to model the initiation and development of acute myeloid leukemia, identifying transcriptomic perturbations that accurately predict time to disease development.See related commentary by Kuijjer, p. 3072 GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/15/3157/F1.large.jpg.


Assuntos
Leucemia Mieloide Aguda , Leucócitos Mononucleares , Animais , Progressão da Doença , Genômica , Leucemia Mieloide Aguda/genética , Camundongos , Transcriptoma
10.
Leukemia ; 34(1): 75-86, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31337857

RESUMO

The E3 ligase human double minute 2 (HDM2) regulates the activity of the tumor suppressor protein p53. A p53-independent HDM2 expression has been reported on the membrane of cancer cells but not on that of normal cells. Herein, we first showed that membrane HDM2 (mHDM2) is exclusively expressed on human and mouse AML blasts, including leukemia stem cell (LSC)-enriched subpopulations, but not on normal hematopoietic stem cells (HSCs). Higher mHDM2 levels in AML blasts were associated with leukemia-initiating capacity, quiescence, and chemoresistance. We also showed that a synthetic peptide PNC-27 binds to mHDM2 and enhances the interaction of mHDM2 and E-cadherin on the cell membrane; in turn, E-cadherin ubiquitination and degradation lead to membrane damage and cell death of AML blasts by necrobiosis. PNC-27 treatment in vivo resulted in a significant killing of both AML "bulk" blasts and LSCs, as demonstrated respectively in primary and secondary transplant experiments, using both human and murine AML models. Notably, PNC-27 spares normal HSC activity, as demonstrated in primary and secondary BM transplant experiments of wild-type mice. We concluded that mHDM2 represents a novel and unique therapeutic target, and targeting mHDM2 using PNC-27 selectively kills AML cells, including LSCs, with minimal off-target hematopoietic toxicity.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Animais , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Xenoenxertos , Humanos , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteína Supressora de Tumor p53/farmacologia
11.
Leukemia ; 34(5): 1241-1252, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31772299

RESUMO

Timed degradation of the cyclin-dependent kinase inhibitor p27Kip1 by the E3 ubiquitin ligase F-box protein SKP2 is critical for T-cell progression into cell cycle, coordinating proliferation and differentiation processes. SKP2 expression is regulated by mitogenic stimuli and by Notch signaling, a key pathway in T-cell development and in T-cell acute lymphoblastic leukemia (T-ALL); however, it is not known whether SKP2 plays a role in the development of T-ALL. Here, we determined that SKP2 function is relevant for T-ALL leukemogenesis, whereas is dispensable for T-cell development. Targeted inhibition of SKP2 by genetic deletion or pharmacological blockade markedly inhibited proliferation of human T-ALL cells in vitro and antagonized disease in vivo in murine and xenograft leukemia models, with little effect on normal tissues. We also demonstrate a novel feed forward feedback loop by which Notch and IL-7 signaling cooperatively converge on SKP2 induction and cell cycle activation. These studies show that the Notch/SKP2/p27Kip1 pathway plays a unique role in T-ALL development and provide a proof-of-concept for the use of SKP2 as a new therapeutic target in T-cell acute lymphoblastic leukemia (T-ALL).


Assuntos
Apoptose , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases Associadas a Fase S/antagonistas & inibidores , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Proteínas Quinases Associadas a Fase S/fisiologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Blood ; 134(15): 1257-1268, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31395602

RESUMO

Relapse remains the main cause of MLL-rearranged (MLL-r) acute lymphoblastic leukemia (ALL) treatment failure resulting from persistence of drug-resistant clones after conventional chemotherapy treatment or targeted therapy. Thus, defining mechanisms underlying MLL-r ALL maintenance is critical for developing effective therapy. PRMT1, which deposits an asymmetric dimethylarginine mark on histone/non-histone proteins, is reportedly overexpressed in various cancers. Here, we demonstrate elevated PRMT1 levels in MLL-r ALL cells and show that inhibition of PRMT1 significantly suppresses leukemic cell growth and survival. Mechanistically, we reveal that PRMT1 methylates Fms-like receptor tyrosine kinase 3 (FLT3) at arginine (R) residues 972 and 973 (R972/973), and its oncogenic function in MLL-r ALL cells is FLT3 methylation dependent. Both biochemistry and computational analysis demonstrate that R972/973 methylation could facilitate recruitment of adaptor proteins to FLT3 in a phospho-tyrosine (Y) residue 969 (Y969) dependent or independent manner. Cells expressing R972/973 methylation-deficient FLT3 exhibited more robust apoptosis and growth inhibition than did Y969 phosphorylation-deficient FLT3-transduced cells. We also show that the capacity of the type I PRMT inhibitor MS023 to inhibit leukemia cell viability parallels baseline FLT3 R972/973 methylation levels. Finally, combining FLT3 tyrosine kinase inhibitor PKC412 with MS023 treatment enhanced elimination of MLL-r ALL cells relative to PKC412 treatment alone in patient-derived mouse xenografts. These results indicate that abolishing FLT3 arginine methylation through PRMT1 inhibition represents a promising strategy to target MLL-r ALL cells.


Assuntos
Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Apoptose , Proliferação de Células , Sobrevivência Celular , Rearranjo Gênico , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Células Tumorais Cultivadas
13.
Cell Stem Cell ; 23(3): 355-369.e9, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30146412

RESUMO

Myelodysplastic syndrome (MDS), a largely incurable hematological malignancy, is derived from aberrant clonal hematopoietic stem/progenitor cells (HSPCs) that persist after conventional therapies. Defining the mechanisms underlying MDS HSPC maintenance is critical for developing MDS therapy. The deacetylase SIRT1 regulates stem cell proliferation, survival, and self-renewal by deacetylating downstream proteins. Here we show that SIRT1 protein levels were downregulated in MDS HSPCs. Genetic or pharmacological activation of SIRT1 inhibited MDS HSPC functions, whereas SIRT1 deficiency enhanced MDS HSPC self-renewal. Mechanistically, the inhibitory effects of SIRT1 were dependent on TET2, a safeguard against HSPC transformation. SIRT1 deacetylated TET2 at conserved lysine residues in its catalytic domain, enhancing TET2 activity. Our genome-wide analysis identified cancer-related genes regulated by the SIRT1/TET2 axis. SIRT1 activation also inhibited functions of MDS HSPCs from patients with TET2 heterozygous mutations. Altogether, our results indicate that restoring TET2 function through SIRT1 activation represents a promising means to target MDS HSPCs.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Síndromes Mielodisplásicas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sirtuína 1/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Dioxigenases , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética , Células Tumorais Cultivadas
14.
Front Cell Dev Biol ; 6: 55, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896473

RESUMO

Here we present a theoretical and mathematical perspective on the process of aging. We extend the concepts of physical space and time to an abstract, mathematically-defined space, which we associate with a concept of "biological space-time" in which biological dynamics may be represented. We hypothesize that biological dynamics, represented as trajectories in biological space-time, may be used to model and study different rates of biological aging. As a consequence of this hypothesis, we show how dilation or contraction of time analogous to relativistic corrections of physical time resulting from accelerated or decelerated biological dynamics may be used to study precipitous or protracted aging. We show specific examples of how these principles may be used to model different rates of aging, with an emphasis on cancer in aging. We discuss how this theory may be tested or falsified, as well as novel concepts and implications of this theory that may improve our interpretation of biological aging.

15.
Nat Med ; 24(4): 450-462, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29505034

RESUMO

Leukemia stem cells (LSCs) in individuals with chronic myelogenous leukemia (CML) (hereafter referred to as CML LSCs) are responsible for initiating and maintaining clonal hematopoiesis. These cells persist in the bone marrow (BM) despite effective inhibition of BCR-ABL kinase activity by tyrosine kinase inhibitors (TKIs). Here we show that although the microRNA (miRNA) miR-126 supported the quiescence, self-renewal and engraftment capacity of CML LSCs, miR-126 levels were lower in CML LSCs than in long-term hematopoietic stem cells (LT-HSCs) from healthy individuals. Downregulation of miR-126 levels in CML LSCs was due to phosphorylation of Sprouty-related EVH1-domain-containing 1 (SPRED1) by BCR-ABL, which led to inhibition of the RAN-exportin-5-RCC1 complex that mediates miRNA maturation. Endothelial cells (ECs) in the BM supply miR-126 to CML LSCs to support quiescence and leukemia growth, as shown using mouse models of CML in which Mir126a (encoding miR-126) was conditionally knocked out in ECs and/or LSCs. Inhibition of BCR-ABL by TKI treatment caused an undesired increase in endogenous miR-126 levels, which enhanced LSC quiescence and persistence. Mir126a knockout in LSCs and/or ECs, or treatment with a miR-126 inhibitor that targets miR-126 expression in both LSCs and ECs, enhanced the in vivo anti-leukemic effects of TKI treatment and strongly diminished LSC leukemia-initiating capacity, providing a new strategy for the elimination of LSCs in individuals with CML.


Assuntos
Medula Óssea/patologia , Autorrenovação Celular , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/patologia , Nicho de Células-Tronco , Animais , Regulação para Baixo/genética , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas de Fusão bcr-abl/metabolismo , Regulação Leucêmica da Expressão Gênica , Técnicas de Silenciamento de Genes , Inativação Gênica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/ultraestrutura , Inibidores de Proteínas Quinases/farmacologia
16.
Blood ; 131(7): 741-745, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29301755

RESUMO

As a growing number of patients with multiple myeloma (MM) respond to upfront therapies while eventually relapsing in a time frame that is often unpredictable, attention has increasingly focused on developing novel diagnostic criteria to also account for disease dissemination. Positron emission tomography/computed tomography (PET/CT) is often used as a noninvasive monitoring strategy to assess cancer cell dissemination, but because the uptake of the currently used radiotracer 18fluorodeoxyglucose (18F-FDG) is a function of the metabolic activity of both malignant and nonmalignant cells, the results frequently lack sufficient specificity. Radiolabeled antibodies targeting MM tissue may detect disease irrespective of cell metabolism. Hence, we conjugated the clinically significant CD38-directed human antibody daratumumab (Darzalex [Dara]) to the DOTA chelator and labeled it with the positron-emitting radionuclide copper 64 (64Cu; 64Cu-DOTA-Dara). Here, we show that 64Cu-DOTA-Dara can efficiently bind CD38 on the surface of MM cells and was mainly detected in the bones associated with tumor in a MM murine model. We also show that PET/CT based on 64Cu-DOTA-Dara displays a higher resolution and specificity to detect MM cell dissemination than does 18F-FDG PET/CT and was even more sensitive than were bioluminescence signals. We therefore have supporting evidence for using 64Cu-DOTA-Dara as a novel imaging agent for MM.


Assuntos
Anticorpos Monoclonais , Radioisótopos de Cobre , Mieloma Múltiplo/diagnóstico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Animais , Anticorpos Monoclonais/farmacocinética , Linhagem Celular Tumoral , Rastreamento de Células/métodos , Radioisótopos de Cobre/farmacocinética , Meia-Vida , Xenoenxertos , Humanos , Camundongos , Mieloma Múltiplo/metabolismo , Transplante de Neoplasias , Traçadores Radioativos
17.
J Clin Invest ; 127(12): 4527-4540, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29130940

RESUMO

Endothelial cells (ECs) are components of the hematopoietic microenvironment and regulate hematopoietic stem and progenitor cell (HSPC) homeostasis. Cytokine treatments that cause HSPC trafficking to peripheral blood are associated with an increase in dipeptidylpeptidase 4/CD26 (DPP4/CD26), an enzyme that truncates the neurotransmitter neuropeptide Y (NPY). Here, we show that enzymatically altered NPY signaling in ECs caused reduced VE-cadherin and CD31 expression along EC junctions, resulting in increased vascular permeability and HSPC egress. Moreover, selective NPY2 and NPY5 receptor antagonists restored vascular integrity and limited HSPC mobilization, demonstrating that the enzymatically controlled vascular gateway specifically opens by cleavage of NPY by CD26 signaling via NPY2 and NPY5 receptors. Mice lacking CD26 or NPY exhibited impaired HSPC trafficking that was restored by treatment with truncated NPY. Thus, our results point to ECs as gatekeepers of HSPC trafficking and identify a CD26-mediated NPY axis that has potential as a pharmacologic target to regulate hematopoietic trafficking in homeostatic and stress conditions.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Células Endoteliais/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Neuropeptídeo Y/metabolismo , Transdução de Sinais/fisiologia , Animais , Dipeptidil Peptidase 4/genética , Células Endoteliais/citologia , Células-Tronco Hematopoéticas/citologia , Humanos , Camundongos , Camundongos Knockout , Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/agonistas , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo
18.
J Vis Exp ; (121)2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28362378

RESUMO

Increasing evidence indicates that normal hematopoiesis is regulated by distinct microenvironmental cues in the BM, which include specialized cellular niches modulating critical hematopoietic stem cell (HSC) functions1,2. Indeed, a more detailed picture of the hematopoietic microenvironment is now emerging, in which the endosteal and the endothelial niches form functional units for the regulation of normal HSC and their progeny3,4,5. New studies have revealed the importance of perivascular cells, adipocytes and neuronal cells in maintaining and regulating HSC function6,7,8. Furthermore, there is evidence that cells from different lineages, i.e. myeloid and lymphoid cells, home and reside in specific niches within the BM microenvironment. However, a complete mapping of the BM microenvironment and its occupants is still in progress. Transgenic mouse strains expressing lineage specific fluorescent markers or mice genetically engineered to lack selected molecules in specific cells of the BM niche are now available. Knock-out and lineage tracking models, in combination with transplantation approaches, provide the opportunity to refine the knowledge on the role of specific "niche" cells for defined hematopoietic populations, such as HSC, B-cells, T-cells, myeloid cells and erythroid cells. This strategy can be further potentiated by merging the use of two-photon microscopy of the calvarium. By providing in vivo high resolution imaging and 3-D rendering of the BM calvarium, we can now determine precisely the location where specific hematopoietic subsets home in the BM and evaluate the kinetics of their expansion over time. Here, Lys-GFP transgenic mice (marking myeloid cells)9 and RBPJ knock-out mice (lacking canonical Notch signaling)10 are used in combination with IVFM to determine the engraftment of myeloid cells to a Notch defective BM microenvironment.


Assuntos
Células da Medula Óssea/citologia , Células-Tronco Hematopoéticas/citologia , Microscopia Intravital/métodos , Microscopia de Fluorescência/métodos , Modelos Genéticos , Nicho de Células-Tronco , Animais , Células da Medula Óssea/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
19.
Stem Cells ; 35(4): 1053-1064, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28009085

RESUMO

The molecular pathways regulating lymphoid priming, fate, and development of multipotent bone marrow hematopoietic stem and progenitor cells (HSPCs) that continuously feed thymic progenitors remain largely unknown. While Notch signal is indispensable for T cell specification and differentiation, the downstream effectors are not well understood. PRL2, a protein tyrosine phosphatase that regulates hematopoietic stem cell proliferation and self-renewal, is highly expressed in murine thymocyte progenitors. Here we demonstrate that protein tyrosine phosphatase PRL2 and receptor tyrosine kinase c-Kit are critical downstream targets and effectors of the canonical Notch/RBPJ pathway in early T cell progenitors. While PRL2 deficiency resulted in moderate defects of thymopoiesis in the steady state, de novo generation of T cells from Prl2 null hematopoietic stem cells was significantly reduced following transplantation. Prl2 null HSPCs also showed impaired T cell differentiation in vitro. We found that Notch/RBPJ signaling upregulated PRL2 as well as c-Kit expression in T cell progenitors. Further, PRL2 sustains Notch-mediated c-Kit expression and enhances stem cell factor/c-Kit signaling in T cell progenitors, promoting effective DN1-DN2 transition. Thus, we have identified a critical role for PRL2 phosphatase in mediating Notch and c-Kit signals in early T cell progenitors. Stem Cells 2017;35:1053-1064.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores Notch/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Linfócitos T/citologia , Animais , Animais Recém-Nascidos , Diferenciação Celular , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Transdução de Sinais , Timo/metabolismo , Regulação para Cima
20.
Sci Rep ; 6: 31596, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27530098

RESUMO

Circulating endothelial microparticles (EMPs) are emerging as biomarkers of chronic obstructive pulmonary disease (COPD) in individuals exposed to cigarette smoke (CS), but their mechanism of release and function remain unknown. We assessed biochemical and functional characteristics of EMPs and circulating microparticles (cMPs) released by CS. CS exposure was sufficient to increase microparticle levels in plasma of humans and mice, and in supernatants of primary human lung microvascular endothelial cells. CS-released EMPs contained predominantly exosomes that were significantly enriched in let-7d, miR-191; miR-126; and miR125a, microRNAs that reciprocally decreased intracellular in CS-exposed endothelium. CS-released EMPs and cMPs were ceramide-rich and required the ceramide-synthesis enzyme acid sphingomyelinase (aSMase) for their release, an enzyme which was found to exhibit significantly higher activity in plasma of COPD patients or of CS-exposed mice. The ex vivo or in vivo engulfment of EMPs or cMPs by peripheral blood monocytes-derived macrophages was associated with significant inhibition of efferocytosis. Our results indicate that CS, via aSMase, releases circulating EMPs with distinct microRNA cargo and that EMPs affect the clearance of apoptotic cells by specialized macrophages. These targetable effects may be important in the pathogenesis of diseases linked to endothelial injury and inflammation in smokers.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Fumaça , Produtos do Tabaco , Animais , Estudos de Casos e Controles , Endotélio Vascular/fisiopatologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA