Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genet Med ; 2(4): 249-54, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11252710

RESUMO

The International Olympic Committee (IOC) officially mandated gender verification for female athletes beginning in 1968 and continuing through 1998. The rationale was to prevent masquerading males and women with "unfair, male-like" physical advantage from competing in female-only events. Visual observation and gynecological examination had been tried on a trial basis for two years at some competitions leading up to the 1968 Olympic Games, but these invasive and demeaning processes were jettisoned in favor of laboratory-based genetic tests. Sex chromatin and more recently DNA analyses for Y-specific male material were then required of all female athletes immediately preceding IOC-sanctioned sporting events, and many other international and national competitions following the IOC model. On-site gender verification has since been found to be highly discriminatory, and the cause of emotional trauma and social stigmatization for many females with problems of intersex who have been screened out from competition. Despite compelling evidence for the lack of scientific merit for chromosome-based screening for gender, as well as its functional and ethical inconsistencies, the IOC persisted in its policy for 30 years. The coauthors of this manuscript have worked with some success to rescind this policy through educating athletes and sports governors regarding the psychological and physical nature of sexual differentiation, and the inequities of genetic sex testing. In 1990, the International Amateur Athletics Federation (IAAF) called for abandonment of required genetic screening of women athletes, and by 1992 had adopted a fairer, medically justifiable model for preventing only male "impostors" in international track and field. At the recent recommendation of the IOC Athletes Commission, the Executive Board of the IOC has finally recognized the medical and functional inconsistencies and undue costs of chromosome-based methods. In 1999, the IOC ratified the abandonment of on-site genetic screening of females at the next Olympic Games in Australia. This article reviews the history and rationales for fairness in female-only sports that have led to the rise and fall of on-site, chromosome-based gender verification at international sporting events.


Assuntos
Proteínas Nucleares , Análise para Determinação do Sexo/história , Esportes/história , Fatores de Transcrição , Cromatina , Cromossomos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/história , Ética Médica/história , Feminino , História do Século XX , Humanos , Masculino , Fatores Sexuais , Proteína da Região Y Determinante do Sexo , Esportes/legislação & jurisprudência
2.
J Fluoresc ; 5(4): 377-81, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24226914

RESUMO

The extent to which energy transfer occurs in electronically excited organic adlayer films on dielectric surfaces is investigated. Migration and subsequent trapping of the energy in the film are observed by pumping the singlet state of an organic adlayer of benzophenone and by monitoring the phosphorescence and fluorescence lifetimes. To observe the effects of adsorption, benzophenone was chosen as the adlayer because the energies of its well characterizedn,π carbonyl states are remarkably sensitive to solvent interactions. Upon excitation with a nitrogen laser, the perturbation on the electronic states of benzophenone by the substrate caused the emergence of the normally absent fluorescence from the adlayer traps at the interface between the surface of the dielectric substrate and the adlayer. Energy transfer to this interface was observed as a function of film thickness. On the surface of a single crystal of an organic crystal, naphthalene, energy transfer from the adlayer to the substrate was observed, whereas such transfer was not energetically possible with the other dielectric surfaces.

3.
Sports Med ; 16(5): 305-15, 1993 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8272686

RESUMO

The possibility that men might masquerade as women and be unfair competitors in women's sports is accepted as outrageous by athletes and the public alike. Since the 1930s, media reports have fuelled claims that individuals who once competed as female athletes subsequently appeared to be men. In most of these cases there was probably ambiguity of the external genitalia, possibly as a result of male pseudohermaphroditism. Nonetheless, beginning at the Rome Olympic Games in 1960, the International Amateur Athletics Federation (IAAF) began establishing rules of eligibility for women athletes. Initially, physical examination was used as a method for gender verification, but this plan was widely resented. Thus, sex chromatin testing (buccal smear) was introduced at the Mexico City Olympic Games in 1968. The principle was that genetic females (46,XX) show a single X-chromatic mass, whereas males (46,XY) do not. Unfortunately, sex chromatin analysis fell out of common diagnostic use by geneticists shortly after the International Olympic Committee (IOC) began its implementation for gender verification. The lack of laboratories routinely performing the test aggravated the problem of errors in interpretation by inexperienced workers, yielding false-positive and false-negative results. However, an even greater problem is that there exist phenotypic females with male sex chromatin patterns (e.g. androgen insensitivity, XY gonadal dysgenesis). These individuals have no athletic advantage as a result of their congenital abnormality and reasonably should not be excluded from competition. That is, only the chromosomal (genetic) sex is analysed by sex chromatin testing, not the anatomical or psychosocial status. For all the above reasons sex chromatin testing unfairly excludes many athletes. Although the IOC offered follow-up physical examinations that could have restored eligibility for those 'failing' sex chromatin tests, most affected athletes seemed to prefer to 'retire'. All these problems remain with the current laboratory based gender verification test, polymerase chain reaction based testing of the SRY gene, the main candidate for male sex determination. Thus, this 'advance' in fact still fails to address the fundamental inequities of laboratory based gender verification tests. The IAAF considered the issue in 1991 and 1992, and concluded that gender verification testing was not needed. This was thought to be especially true because of the current use of urine testing to exclude doping: voiding is observed by an official in order to verify that a sample from a given athlete has actually come from his or her urethra. That males could masquerade as females in these circumstances seems extraordinarily unlikely. Screening for gender is no longer undertaken at IAAF competitions.


Assuntos
Análise para Determinação do Sexo , Medicina Esportiva , Transtornos do Desenvolvimento Sexual/genética , Feminino , Humanos , Masculino , Reação em Cadeia da Polimerase , Cromatina Sexual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA