Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1002711, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755701

RESUMO

Bordered pit membranes of angiosperm xylem are anisotropic, mesoporous media between neighbouring conduits, with a key role in long distance water transport. Yet, their mechanical properties are poorly understood. Here, we aim to quantify the stiffness of intervessel pit membranes over various growing seasons. By applying an AFM-based indentation technique "Quantitative Imaging" we measured the effective elastic modulus (E effective) of intervessel pit membranes of Clematis vitalba in dependence of size, age, and hydration state. The indentation-deformation behaviour was analysed with a non-linear membrane model, and paired with magnetic resonance imaging to visualise sap-filled and embolised vessels, while geometrical data of bordered pits were obtained using electron microscopy. E effective was transformed to the geometrically independent apparent elastic modulus E apparent and to aspiration pressure P b. The material stiffness (E apparent) of fresh pit membranes was with 57 MPa considerably lower than previously suggested. The estimated pressure for pit membrane aspiration was 2.20+28 MPa. Pit membranes from older growth rings were shrunken, had a higher material stiffness and a lower aspiration pressure than current year ones, suggesting an irreversible, mechanical ageing process. This study provides an experimental-stiffness analysis of hydrated intervessel pit membranes in their native state. The estimated aspiration pressure suggests that membranes are not deflected under normal field conditions. Although absolute values should be interpreted carefully, our data suggest that pit membrane shrinkage implies increasing material stiffness, and highlight the dynamic changes of pit membrane mechanics and their complex, functional behaviour for fluid transport.

2.
Am J Bot ; 108(12): 2356-2370, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34648183

RESUMO

PREMISE: Among the sophisticated trap types in carnivorous plants, the underground eel traps of corkskrew plants (Genlisea spp., Lentibulariaceae) are probably the least understood in terms of their functional principle. Here, we provide a detailed analysis of structural and hydraulic features of G. hispidula traps, contributing to the ongoing debate on whether these traps can actively generate water streams to promote prey capture. METHODS: Anatomical and hydraulic traits of detached traps, including inner trap diameters, chamber line element, hair length, glandular pattern, and hydraulic conductivity, were investigated quantitatively using light and electron microscopy, x-ray microtomography, and hydraulic measurements. RESULTS: Hydraulic resistivity in the neck of the trap, from the trap mouth toward the vesicle (digestive chamber) was 10 times lower than in the opposite direction. The comparison of measured and theoretical flow rates suggests that the retrorse hairs inside trap necks also provide considerable resistance against movement of matter toward the vesicle. Hairs showed a gradient in length along the neck, with the shortest hairs near the vesicle. Co-occurrence of quadrifid and bifid glands was limited to a small part of the neck, with quadrifids near the vesicle and bifids toward the trap mouth. CONCLUSIONS: The combination of structural gradients with hydraulic anisotropy suggests the trap is a highly fine-tuned system based on likely trade-offs between efficient prey movement in the trap interior toward the vesicle, prey retention, and spatial digestion capacities and is not counter to the generation of water streams.


Assuntos
Planta Carnívora , Lamiales , Anisotropia , Planta Carnívora/anatomia & histologia , Lamiales/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA