Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 337, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977781

RESUMO

The widespread use of rodents in neuroscience has prompted the development of optimized viral variants for transduction of brain cells, in vivo. However, many of the viruses developed are less efficient in other model organisms, with birds being among the most resistant to transduction by current viral tools. Resultantly, the use of genetically-encoded tools and methods in avian species is markedly lower than in rodents; likely holding the field back. We sought to bridge this gap by developing custom viruses towards the transduction of brain cells of the Japanese quail. We first develop a protocol for culturing primary neurons and glia from quail embryos, followed by characterization of cultures via immunostaining, single cell mRNA sequencing, patch clamp electrophysiology and calcium imaging. We then leveraged the cultures for the rapid screening of various viruses, only to find that all yielded poor to no infection of cells in vitro. However, few infected neurons were obtained by AAV1 and AAV2. Scrutiny of the sequence of the AAV receptor found in quails led us to rationally design a custom-made AAV variant (AAV1-T593K; AAV1*) that exhibits improved transduction efficiencies in vitro and in vivo (14- and five-fold, respectively). Together, we present unique culturing method, transcriptomic profiles of quail's brain cells and a custom-tailored AAV1 for transduction of quail neurons in vitro and in vivo.


Assuntos
Coturnix , Vetores Genéticos , Animais , Coturnix/genética , Transdução Genética , Encéfalo , Neurônios
2.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835332

RESUMO

Purposeful induction of fever for healing, including the treatment of epilepsy, was used over 2000 years ago by Hippocrates. More recently, fever has been demonstrated to rescue behavioral abnormalities in children with autism. However, the mechanism of fever benefit has remained elusive due in large part to the lack of appropriate human disease models recapitulating the fever effect. Pathological mutations in the IQSEC2 gene are frequently seen in children presenting with intellectual disability, autism and epilepsy. We recently described a murine A350V IQSEC2 disease model, which recapitulates important aspects of the human A350V IQSEC2 disease phenotype and the favorable response to a prolonged and sustained rise in body core temperature in a child with the mutation. Our goal has been to use this system to understand the mechanism of fever benefit and then develop drugs that can mimic this effect and reduce IQSEC2-associated morbidity. In this study, we first demonstrate a reduction in seizures in the mouse model following brief periods of heat therapy, similar to what was observed in a child with the mutation. We then show that brief heat therapy is associated with the correction of synaptic dysfunction in neuronal cultures of A350V mice, likely mediated by Arf6-GTP.


Assuntos
Epilepsia , Fatores de Troca do Nucleotídeo Guanina , Hipertermia Induzida , Proteínas do Tecido Nervoso , Convulsões , Animais , Criança , Humanos , Camundongos , Epilepsia/terapia , Fatores de Troca do Nucleotídeo Guanina/genética , Temperatura Alta , Deficiência Intelectual/genética , Mutação , Proteínas do Tecido Nervoso/genética , Receptores de AMPA/genética , Convulsões/terapia
3.
Elife ; 102021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34212862

RESUMO

The N-methyl-D-aspartate receptors (NMDARs; GluNRS) are glutamate receptors, commonly located at excitatory synapses. Mutations affecting receptor function often lead to devastating neurodevelopmental disorders. We have identified two toddlers with different heterozygous missense mutations of the same, and highly conserved, glycine residue located in the ligand-binding-domain of GRIN2B: G689C and G689S. Structure simulations suggest severely impaired glutamate binding, which we confirm by functional analysis. Both variants show three orders of magnitude reductions in glutamate EC50, with G689S exhibiting the largest reductions observed for GRIN2B (~2000-fold). Moreover, variants multimerize with, and upregulate, GluN2Bwt-subunits, thus engendering a strong dominant-negative effect on mixed channels. In neurons, overexpression of the variants instigates suppression of synaptic GluNRs. Lastly, while exploring spermine potentiation as a potential treatment, we discovered that the variants fail to respond due to G689's novel role in proton-sensing. Together, we describe two unique variants with extreme effects on channel function. We employ protein-stability measures to explain why current (and future) LBD mutations in GluN2B primarily instigate Loss-of-Function.


Assuntos
Encefalopatias/genética , Ácido Glutâmico/metabolismo , Mutação de Sentido Incorreto , Receptores de N-Metil-D-Aspartato/genética , Criança , Pré-Escolar , Células HEK293 , Humanos , Lactente , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo
4.
Nat Protoc ; 14(3): 864-900, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804570

RESUMO

Optogenetic tools provide users the ability to photocontrol the activity of cells. Commonly, activation is achieved by expression of proteins from photosynthetic organisms, for example, microbial opsins (e.g., ChR2). Alternatively, a sister approach, synthetic optogenetics, enables photocontrol over proteins of mammalian origin by use of photoswitches, visible light (typically), and genetic modification. Thus, synthetic optogenetics facilitates interrogation of native neuronal signaling mechanisms. However, the poor tissue penetration of visible wavelengths impedes the use of the technique in tissue, as two-photon excitation (2PE) is typically required to access the near-infrared window. Here, we describe an alternative technique that uses 2PE-compatible photoswitches (section 1) for photoactivation of genetically modified glutamate receptors (section 2). Furthermore, for fast, multi-region photoactivation, we describe the use of 2P-digital holography (2P-DH) (section 3). We detail how to combine 2P-DH and synthetic optogenetics with electrophysiology, or with red fluorescence Ca2+ recordings, for all-optical neural interrogation. The time required to complete the methods, aside from obtaining the necessary reagents and illumination equipment, is ~3 weeks.


Assuntos
Holografia/métodos , Optogenética/métodos , Fótons , Sequência de Aminoácidos , Animais , Compostos Azo/química , Feminino , Células HEK293 , Humanos , Ligantes , Domínios Proteicos , Ratos Sprague-Dawley , Receptores de Glutamato/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA