Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Toxicol Appl Pharmacol ; 489: 117015, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917890

RESUMO

Per- and poly-fluoroalkyl substances (PFAS) have a wide range of elimination half-lives (days to years) in humans, thought to be in part due to variation in proximal tubule reabsorption. While human biomonitoring studies provide important data for some PFAS, renal clearance (CLrenal) predictions for hundreds of PFAS in commerce requires experimental studies with in vitro models and physiologically-based in vitro-to-in vivo extrapolation (IVIVE). Options for studying renal proximal tubule pharmacokinetics include cultures of renal proximal tubule epithelial cells (RPTECs) and/or microphysiological systems. This study aimed to compare CLrenal predictions for PFAS using in vitro models of varying complexity (96-well plates, static 24-well Transwells and a fluidic microphysiological model, all using human telomerase reverse transcriptase-immortalized and OAT1-overexpressing RPTECs combined with in silico physiologically-based IVIVE. Three PFAS were tested: one with a long half-life (PFOS) and two with shorter half-lives (PFHxA and PFBS). PFAS were added either individually (5 µM) or as a mixture (2 µM of each substance) for 48 h. Bayesian methods were used to fit concentrations measured in media and cells to a three-compartmental model to obtain the in vitro permeability rates, which were then used as inputs for a physiologically-based IVIVE model to estimate in vivo CLrenal. Our predictions for human CLrenal of PFAS were highly concordant with available values from in vivo human studies. The relative values of CLrenal between slow- and faster-clearance PFAS were most highly concordant between predictions from 2D culture and corresponding in vivo values. However, the predictions from the more complex model (with or without flow) exhibited greater concordance with absolute CLrenal. Overall, we conclude that a combined in vitro-in silico workflow can predict absolute CLrenal values, and effectively distinguish between PFAS with slow and faster clearance, thereby allowing prioritization of PFAS with a greater potential for bioaccumulation in humans.


Assuntos
Simulação por Computador , Fluorocarbonos , Túbulos Renais Proximais , Modelos Biológicos , Humanos , Fluorocarbonos/farmacocinética , Túbulos Renais Proximais/metabolismo , Meia-Vida , Taxa de Depuração Metabólica , Fluxo de Trabalho , Eliminação Renal , Poluentes Ambientais/farmacocinética , Poluentes Ambientais/metabolismo , Células Epiteliais/metabolismo
2.
Toxicol Sci ; 199(2): 227-245, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38335931

RESUMO

Chemicals in the systemic circulation can undergo hepatic xenobiotic metabolism, generate metabolites, and exhibit altered toxicity compared with their parent compounds. This article describes a 2-chamber liver-organ coculture model in a higher-throughput 96-well format for the determination of toxicity on target tissues in the presence of physiologically relevant human liver metabolism. This 2-chamber system is a hydrogel formed within each well consisting of a central well (target tissue) and an outer ring-shaped trough (human liver tissue). The target tissue chamber can be configured to accommodate a three-dimensional (3D) spheroid-shaped microtissue, or a 2-dimensional (2D) cell monolayer. Culture medium and compounds freely diffuse between the 2 chambers. Human-differentiated HepaRG liver cells are used to form the 3D human liver microtissues, which displayed robust protein expression of liver biomarkers (albumin, asialoglycoprotein receptor, Phase I cytochrome P450 [CYP3A4] enzyme, multidrug resistance-associated protein 2 transporter, and glycogen), and exhibited Phase I/II enzyme activities over the course of 17 days. Histological and ultrastructural analyses confirmed that the HepaRG microtissues presented a differentiated hepatocyte phenotype, including abundant mitochondria, endoplasmic reticulum, and bile canaliculi. Liver microtissue zonation characteristics could be easily modulated by maturation in different media supplements. Furthermore, our proof-of-concept study demonstrated the efficacy of this coculture model in evaluating testosterone-mediated androgen receptor responses in the presence of human liver metabolism. This liver-organ coculture system provides a practical, higher-throughput testing platform for metabolism-dependent bioactivity assessment of drugs/chemicals to better recapitulate the biological effects and potential toxicity of human exposures.


Assuntos
Técnicas de Cocultura , Hepatócitos , Ensaios de Triagem em Larga Escala , Fígado , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Testes de Toxicidade/métodos , Linhagem Celular , Biomarcadores/metabolismo , Xenobióticos/toxicidade
3.
Chemosphere ; 344: 140329, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37783352

RESUMO

Next-generation risk assessment (NGRA) for environmental chemicals involves a weight of evidence (WoE) framework integrating a suite of new approach methodologies (NAMs) based on points of departure (PoD) obtained from in vitro assays. Among existing NAMs, the omic-based technologies are of particular importance based on the premise that any apical endpoint change indicative of impaired health must be underpinned by some alterations at the omics level, such as transcriptome, proteome, metabolome, epigenome and genome. Transcriptomic assay plays a leading role in providing relatively conservative PoDs compared with apical endpoints. However, it is unclear whether and how parameters measured with other omics techniques predict the cellular response to chemical perturbations, especially at exposure levels below the transcriptomically defined PoD. Multi-omics coverage may provide additional sensitive or confirmative biomarkers to complement and reduce the uncertainty in safety decisions made using targeted and transcriptomics assays. In the present study, we conducted multi-omics studies of transcriptomics, proteomics and phosphoproteomics on two prototype compounds, coumarin and 2,4-dichlorophenoxyacetic acid (2,4-D), with multiple chemical concentrations and time points, to understand the sensitivity of the three omics techniques in response to chemically-induced changes in HepG2. We demonstrated that, phosphoproteomics alterations occur not only earlier in time, but also more sensitive to lower concentrations than proteomics and transcriptomics when the HepG2 cells were exposed to various chemical treatments. The phosphoproteomics changes appear to approach maximum when the transcriptomics alterations begin to initiate. Therefore, it is proximal to the very early effects induced by chemical exposure. We concluded that phosphoproteomics can be utilized to provide a more complete coverage of chemical-induced cellular alteration and supplement transcriptomics-based health safety decision making.


Assuntos
Socorristas , Proteômica , Humanos , Proteômica/métodos , Transcriptoma , Proteoma , Perfilação da Expressão Gênica
4.
Toxicol Sci ; 196(1): 52-70, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37555834

RESUMO

Microphysiological systems are an emerging area of in vitro drug development, and their independent evaluation is important for wide adoption and use. The primary goal of this study was to test reproducibility and robustness of a renal proximal tubule microphysiological system, OrganoPlate 3-lane 40, as an in vitro model for drug transport and toxicity studies. This microfluidic model was compared with static multiwell cultures and tested using several human renal proximal tubule epithelial cell (RPTEC) types. The model was characterized in terms of the functional transport for various tubule-specific proteins, epithelial permeability of small molecules (cisplatin, tenofovir, and perfluorooctanoic acid) versus large molecules (fluorescent dextrans, 60-150 kDa), and gene expression response to a nephrotoxic xenobiotic. The advantages offered by OrganoPlate 3-lane 40 as compared with multiwell cultures are the presence of media flow, albeit intermittent, and increased throughput compared with other microfluidic models. However, OrganoPlate 3-lane 40 model appeared to offer only limited (eg, MRP-mediated transport) advantages in terms of either gene expression or functional transport when compared with the multiwell plate culture conditions. Although OrganoPlate 3-lane 40 can be used to study cellular uptake and direct toxic effects of small molecules, it may have limited utility for drug transport studies. Overall, this study offers refined experimental protocols and comprehensive comparative data on the function of RPETCs in traditional multiwell culture and microfluidic OrganoPlate 3-lane 40, information that will be invaluable for the prospective end-users of in vitro models of the human proximal tubule.


Assuntos
Túbulos Renais Proximais , Sistemas Microfisiológicos , Humanos , Reprodutibilidade dos Testes , Estudos Prospectivos , Rim
5.
Arch Toxicol ; 97(6): 1547-1575, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37087486

RESUMO

In next generation risk assessment (NGRA), the Dietary Comparator Ratio (DCR) can be used to assess the safety of chemical exposures to humans in a 3R compliant approach. The DCR compares the Exposure Activity Ratio (EAR) for exposure to a compound of interest (EARtest) to the EAR for an established safe exposure level to a comparator compound (EARcomparator), acting by the same mode of action. It can be concluded that the exposure to a test compound is safe at a corresponding DCR ≤ 1. In this study, genistein (GEN) was selected as a comparator compound by comparison of reported safe internal exposures to GEN to its BMCL05, as no effect level, the latter determined in the in vitro estrogenic MCF7/Bos proliferation, T47D ER-CALUX, and U2OS ERα-CALUX assay. The EARcomparator was defined using the BMCL05 and EC50 values from the 3 in vitro assays and subsequently used to calculate the DCRs for exposures to 14 test compounds, predicting the (absence of) estrogenicity. The predictions were evaluated by comparison to reported in vivo estrogenicity in humans for these exposures. The results obtained support in the DCR approach as an important animal-free new approach methodology (NAM) in NGRA and show how in vitro assays can be used to define DCR values.


Assuntos
Estrogênios , Receptores de Estrogênio , Humanos , Estrogênios/toxicidade , Linhagem Celular Tumoral , Genisteína/toxicidade , Medição de Risco
6.
Chemosphere ; 313: 137359, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427571

RESUMO

Omic-based technologies are of particular interest and importance for hazard identification and health risk characterization of chemicals. Their application in the new approach methodologies (NAMs) anchored on cellular toxicity pathways is based on the premise that any apical health endpoint change must be underpinned by some alterations at the omic levels. In the present study we examined the cellular responses to two chemicals, caffeine and coumarin, by generating and integrating multi-omic data from multi-dose and multi-time point transcriptomic, proteomic and phosphoproteomic experiments. We showed that the methodology presented here was able to capture the complete chain of events from the first chemical-induced changes at the phosphoproteome level, to changes in gene expression, and lastly to changes in protein abundance, each with vastly different points of departure (PODs). In HepG2 cells we found that the metabolism of lipids and general cellular stress response to be the dominant biological processes in response to caffeine and coumarin exposure, respectively. The phosphoproteomic changes were detected early in time, at very low doses and provided a fast, adaptive cellular response to chemical exposure with 7-37-fold lower points of departure comparing to the transcriptomics. Changes in protein abundance were found much less frequently than transcriptomic changes. While challenges remain, our study provides strong and novel evidence supporting the notion that these three omic technologies can be used in an integrated manner to facilitate a more complete understanding of pathway perturbations and POD determinations for risk assessment of chemical exposures.


Assuntos
Segurança Química , Proteômica , Transcriptoma , Cafeína/toxicidade , Perfilação da Expressão Gênica/métodos , Medição de Risco
7.
ALTEX ; 39(3): 359­366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35796331

RESUMO

New approach methodologies (NAMs) that do not use experimental animals are, in certain settings, entirely appropriate for assuring the safety of chemical ingredients, although regulatory adoption has been slow. In this opinion article we discuss how scientific advances that utilize NAMs to certify systemic safety are available now and merit broader acceptance within the framework of next generation risk assessments (NGRA).


Assuntos
Alternativas aos Testes com Animais , Segurança Química , Animais , Medição de Risco
8.
Toxicol Sci ; 189(1): 124-147, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35822611

RESUMO

An important question in toxicological risk assessment is whether non-animal new approach methodologies (NAMs) can be used to make safety decisions that are protective of human health, without being overly conservative. In this work, we propose a core NAM toolbox and workflow for conducting systemic safety assessments for adult consumers. We also present an approach for evaluating how protective and useful the toolbox and workflow are by benchmarking against historical safety decisions. The toolbox includes physiologically based kinetic (PBK) models to estimate systemic Cmax levels in humans, and 3 bioactivity platforms, comprising high-throughput transcriptomics, a cell stress panel, and in vitro pharmacological profiling, from which points of departure are estimated. A Bayesian model was developed to quantify the uncertainty in the Cmax estimates depending on how the PBK models were parameterized. The feasibility of the evaluation approach was tested using 24 exposure scenarios from 10 chemicals, some of which would be considered high risk from a consumer goods perspective (eg, drugs that are systemically bioactive) and some low risk (eg, existing food or cosmetic ingredients). Using novel protectiveness and utility metrics, it was shown that up to 69% (9/13) of the low risk scenarios could be identified as such using the toolbox, whilst being protective against all (5/5) the high-risk ones. The results demonstrated how robust safety decisions could be made without using animal data. This work will enable a full evaluation to assess how protective and useful the toolbox and workflow are across a broader range of chemical-exposure scenarios.


Assuntos
Cosméticos , Adulto , Teorema de Bayes , Benchmarking , Humanos , Medição de Risco , Fluxo de Trabalho
9.
Toxicol Sci ; 188(2): 143-152, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35689632

RESUMO

Much has been written and said about the promise and excitement of microphysiological systems, miniature devices that aim to recreate aspects of human physiology on a chip. The rapid explosion of the offerings and persistent publicity placed high expectations on both product manufacturers and regulatory agencies to adopt the data. Inevitably, discussions of where this technology fits in chemical testing paradigms are ongoing. Some end-users became early adopters, whereas others have taken a more cautious approach because of the high cost and uncertainties of their utility. Here, we detail the experience of a public-private collaboration established for testing of diverse microphysiological systems. Collectively, we present a number of considerations on practical aspects of using microphysiological systems in the context of their applications in decision-making. Specifically, future end-users need to be prepared for extensive on-site optimization and have access to a wide range of imaging and other equipment. We reason that cells, related reagents, and the technical skills of the research staff, not the devices themselves, are the most critical determinants of success. Extrapolation from concentration-response effects in microphysiological systems to human blood or oral exposures, difficulties with replicating the whole organ, and long-term functionality remain as critical challenges. Overall, we conclude that it is unlikely that a rodent- or human-equivalent model is achievable through a finite number of microphysiological systems in the near future; therefore, building consensus and promoting the gradual incorporation of these models into tiered approaches for safety assessment and decision-making is the sensible path to wide adoption.


Assuntos
Dispositivos Lab-On-A-Chip , Humanos
10.
Toxicol Appl Pharmacol ; 449: 116110, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35688186

RESUMO

Protein phosphorylation is the most common type of post-translational modification where serine, threonine or tyrosine are reversibly bound to the phosphate group of ATP in a reaction catalyzed by protein kinases. Phosphorylation plays an important role in regulation of cell homeostasis, including but not limited to signal perception and transduction, gene expression and function of proteins. Protein phosphorylation happens on a fast time scale and represents an energy-efficient way for the cell to adapt to exposure to chemical stressors. To understand the cascade of cellular signaling induced by exposure to chemicals, we have exposed HepG2 cells to three chemicals with different modes of action, namely, caffeine, coumarin, and quercetin in a concentration and time response manner. Significantly upregulated and downregulated phosphosites were screened to analyze the activation/deactivation of signaling pathways by protein kinases. In total, 69, 44 and 12 signaling pathways were found enriched in caffeine, coumarin and quercetin treated cells, respectively, of which 9 pathways were co-enriched with 11 jointly responded kinases. Among identified co-responded kinases, CDK1, MAPK1 and MAPK3 play important roles in cell cycle and insulin signaling pathways. Quantitative phosphoproteomics can sensitively distinguish the effects of different chemicals on cells, allowing the assessment of chemical safety through changes in substrates and metabolic pathways at the cellular level, which is important for the development of non-animal approaches for chemical safety assessment.


Assuntos
Cafeína , Cumarínicos , Quercetina , Cafeína/farmacologia , Cumarínicos/farmacologia , Células Hep G2 , Humanos , Fosforilação , Proteínas Quinases/metabolismo , Proteômica , Quercetina/farmacologia
11.
Front Toxicol ; 4: 881235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722059

RESUMO

In next generation risk assessment (NGRA), non-animal approaches are used to quantify the chemical concentrations required to trigger bioactivity responses, in order to assure safe levels of human exposure. A limitation of many in vitro bioactivity assays, which are used in an NGRA context as new approach methodologies (NAMs), is that toxicokinetics, including biotransformation, are not adequately captured. The present study aimed to include, as a proof of principle, the bioactivity of the metabolite hydroxyflutamide (HF) in an NGRA approach to evaluate the safety of the anti-androgen flutamide (FLU), using the AR-CALUX assay to derive the NAM point of departure (PoD). The NGRA approach applied also included PBK modelling-facilitated quantitative in vitro to in vivo extrapolation (QIVIVE). The PBK model describing FLU and HF kinetics in humans was developed using GastroPlus™ and validated against human pharmacokinetic data. PBK model-facilitated QIVIVE was performed to translate the in vitro AR-CALUX derived concentration-response data to a corresponding in vivo dose-response curve for the anti-androgenicity of FLU, excluding and including the activity of HF (-HF and +HF, respectively). The in vivo benchmark dose 5% lower confidence limits (BMDL05) derived from the predicted in vivo dose-response curves for FLU, revealed a 440-fold lower BMDL05 when taking the bioactivity of HF into account. Subsequent comparison of the predicted BMDL05 values to the human therapeutic doses and historical animal derived PoDs, revealed that PBK modelling-facilitated QIVIVE that includes the bioactivity of the active metabolite is protective and provides a more appropriate PoD to assure human safety via NGRA, whereas excluding this would potentially result in an underestimation of the risk of FLU exposure in humans.

12.
Front Toxicol ; 4: 838466, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295212

RESUMO

New Approach Methodologies (NAMs) promise to offer a unique opportunity to enable human-relevant safety decisions to be made without the need for animal testing in the context of exposure-driven Next Generation Risk Assessment (NGRA). Protecting human health against the potential effects a chemical may have on embryo-foetal development and/or aspects of reproductive biology using NGRA is particularly challenging. These are not single endpoint or health effects and risk assessments have traditionally relied on data from Developmental and Reproductive Toxicity (DART) tests in animals. There are numerous Adverse Outcome Pathways (AOPs) that can lead to DART, which means defining and developing strict testing strategies for every AOP, to predict apical outcomes, is neither a tenable goal nor a necessity to ensure NAM-based safety assessments are fit-for-purpose. Instead, a pragmatic approach is needed that uses the available knowledge and data to ensure NAM-based exposure-led safety assessments are sufficiently protective. To this end, the mechanistic and biological coverage of existing NAMs for DART were assessed and gaps to be addressed were identified, allowing the development of an approach that relies on generating data relevant to the overall mechanisms involved in human reproduction and embryo-foetal development. Using the knowledge of cellular processes and signalling pathways underlying the key stages in reproduction and development, we have developed a broad outline of endpoints informative of DART. When the existing NAMs were compared against this outline to determine whether they provide comprehensive coverage when integrated in a framework, we found them to generally cover the reproductive and developmental processes underlying the traditionally evaluated apical endpoint studies. The application of this safety assessment framework is illustrated using an exposure-led case study.

13.
Arch Toxicol ; 96(3): 711-741, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35103818

RESUMO

Organ-on-chip (OoC) technology is full of engineering and biological challenges, but it has the potential to revolutionize the Next-Generation Risk Assessment of novel ingredients for consumer products and chemicals. A successful incorporation of OoC technology into the Next-Generation Risk Assessment toolbox depends on the robustness of the microfluidic devices and the organ tissue models used. Recent advances in standardized device manufacturing, organ tissue cultivation and growth protocols offer the ability to bridge the gaps towards the implementation of organ-on-chip technology. Next-Generation Risk Assessment is an exposure-led and hypothesis-driven tiered approach to risk assessment using detailed human exposure information and the application of appropriate new (non-animal) toxicological testing approaches. Organ-on-chip presents a promising in vitro approach by combining human cell culturing with dynamic microfluidics to improve physiological emulation. Here, we critically review commercial organ-on-chip devices, as well as recent tissue culture model studies of the skin, intestinal barrier and liver as the main metabolic organ to be used on-chip for Next-Generation Risk Assessment. Finally, microfluidically linked tissue combinations such as skin-liver and intestine-liver in organ-on-chip devices are reviewed as they form a relevant aspect for advancing toxicokinetic and toxicodynamic studies. We point to recent achievements and challenges to overcome, to advance non-animal, human-relevant safety studies.


Assuntos
Dispositivos Lab-On-A-Chip , Medição de Risco/métodos , Toxicologia/métodos , Alternativas aos Testes com Animais/métodos , Alternativas aos Testes com Animais/tendências , Humanos , Intestinos/metabolismo , Fígado/metabolismo , Medição de Risco/tendências , Pele/metabolismo , Técnicas de Cultura de Tecidos , Toxicologia/tendências
14.
ALTEX ; 39(2): 221­234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35064272

RESUMO

The goal of the present study was to assess the predictive performance of a generic human physiologically based kinetic (PBK) model based on in vitro and in silico input data and the effect of using different input approaches for chemical parameterization on those predictions. For this purpose, a dataset was created of 38,772 Cmax predictions for 44 compounds by applying different combinations of in vitro and in silico approaches for chemical parameterization, and these predicted Cmax values were compared to reported in vivo data. Best results were achieved when the hepatic clearance was parameterized based on in vitro (i.e., hepatocytes or liver S9) measured intrinsic clearance values, the method of Rodgers and Rowland for calculating tissue:plasma partition coefficients, and the method of Lobell and Sivarajah for calculating the fraction unbound in plasma. With these parameters, the median Cmax values of 34 out of the 44 compounds were predicted within 5-fold of the observed Cmax, and the Cmax values of 19 compounds were predicted within 2-fold. The median Cmax values of 10 compounds were more than 5-fold overestimated. Underestimations (> 5-fold) did not occur. A comparison of the current generic PBK model structure with chemical-specific PBK models available in literature was made to identify possible kinetic processes not included in the generic PBK model that might explain the overestimations. Overall, the results provide crucial insights into the predictive performance of PBK models based on in vitro and in silico input and the influence of different input approaches on the model predictions.


Assuntos
Fígado , Modelos Biológicos , Humanos , Cinética
15.
Toxicol In Vitro ; 74: 105171, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33848589

RESUMO

Using the chemical doxorubicin (DOX), the objective of the present study was to evaluate the impact of dose metrics selection in the new approach method of integrating physiologically-based kinetic (PBK) modelling and relevant human cell-based assays to inform a priori the point of departure for human health risk. We reviewed the literature on the clinical consequences of DOX treatment to identify dosing scenarios with no or mild cardiotoxicity observed. Key concentrations of DOX that induced cardiomyocyte toxicity in vitro were derived from studies of our own and others. A human population-based PBK model of DOX was developed and verified against pharmacokinetic data. The model was then used to predict plasma and extracellular and intracellular heart concentrations of DOX under selected clinical settings and compared with in vitro outcomes, based on several dose metrics: Cmax (maximum concentration) or AUC (area under concentration-time curve) in free or total form of DOX. We found when using in vitro assays to predict cardiotoxicity for DOX, AUC is a better indicator. Our study illustrates that when appropriate dose metrics are used, it is possible to combine PBK modelling with in vitro-derived toxicity information to define margins of safety and predict low-risk human exposure levels.


Assuntos
Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/farmacocinética , Modelos Biológicos , Medição de Risco/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/sangue , Linhagem Celular , Doxorrubicina/administração & dosagem , Doxorrubicina/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miocárdio/metabolismo , Adulto Jovem
16.
Toxicol In Vitro ; 73: 105132, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33662517

RESUMO

Next Generation Risk Assessment (NGRA) can use the so-called Dietary Comparator Ratio (DCR) to evaluate the safety of a defined exposure to a compound of interest. The DCR compares the Exposure Activity Ratio (EAR) for the compound of interest, to the EAR of an established safe level of human exposure to a comparator compound with the same putative mode of action. A DCR ≤ 1 indicates the exposure evaluated is safe. The present study aimed at defining adequate and safe comparator compound exposures for evaluation of anti-androgenic effects, using 3,3-diindolylmethane (DIM), from cruciferous vegetables, and the anti-androgenic drug bicalutamide (BIC). EAR values for these comparator compounds were defined using the AR-CALUX assay. The adequacy of the new comparator EAR values was evaluated using PBK modelling and by comparing the generated DCRs of a series of test compound exposures to actual knowledge on their safety regarding in vivo anti-androgenicity. Results obtained supported the use of AR-CALUX-based comparator EARs for DCR-based NGRA for putative anti-androgenic compounds. This further validates the DCR approach as an animal free in silico/in vitro 3R compliant method in NGRA.


Assuntos
Antagonistas de Androgênios/toxicidade , Anilidas/toxicidade , Indóis/toxicidade , Modelos Biológicos , Nitrilas/toxicidade , Receptores Androgênicos/metabolismo , Medição de Risco/métodos , Compostos de Tosil/toxicidade , Adulto , Antagonistas de Androgênios/farmacocinética , Anilidas/farmacocinética , Alternativas aos Testes com Animais , Bioensaio , Linhagem Celular Tumoral , Exposição Ambiental , Humanos , Indóis/farmacocinética , Masculino , Nitrilas/farmacocinética , Compostos de Tosil/farmacocinética
17.
Toxicol Sci ; 178(2): 281-301, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991717

RESUMO

The U.S. EPA Endocrine Disruptor Screening Program utilizes data across the ToxCast/Tox21 high-throughput screening (HTS) programs to evaluate the biological effects of potential endocrine active substances. A potential limitation to the use of in vitro assay data in regulatory decision-making is the lack of coverage for xenobiotic metabolic processes. Both hepatic- and peripheral-tissue metabolism can yield metabolites that exhibit greater activity than the parent compound (bioactivation) or are inactive (bioinactivation) for a given biological target. Interpretation of biological effect data for both putative endocrine active substances, as well as other chemicals, screened in HTS assays may benefit from the addition of xenobiotic metabolic capabilities to decrease the uncertainty in predicting potential hazards to human health. The objective of this study was to develop an approach to retrofit existing HTS assays with hepatic metabolism. The Alginate Immobilization of Metabolic Enzymes (AIME) platform encapsulates hepatic S9 fractions in alginate microspheres attached to 96-well peg lids. Functional characterization across a panel of reference substrates for phase I cytochrome P450 enzymes revealed substrate depletion with expected metabolite accumulation. Performance of the AIME method in the VM7Luc estrogen receptor transactivation assay was evaluated across 15 reference chemicals and 48 test chemicals that yield metabolites previously identified as estrogen receptor active or inactive. The results demonstrate the utility of applying the AIME method for identification of false-positive and false-negative target assay effects, reprioritization of hazard based on metabolism-dependent bioactivity, and enhanced in vivo concordance with the rodent uterotrophic bioassay. Integration of the AIME metabolism method may prove useful for future biochemical and cell-based HTS applications.


Assuntos
Alginatos/química , Disruptores Endócrinos , Enzimas Imobilizadas/química , Fígado/enzimologia , Receptores de Estrogênio , Animais , Bioensaio , Ensaios de Triagem em Larga Escala , Receptores de Estrogênio/metabolismo , Roedores , Testes de Toxicidade , Ativação Transcricional
18.
Toxicol Sci ; 176(1): 11-33, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32374857

RESUMO

Many substances for which consumer safety risk assessments need to be conducted are not associated with specific toxicity modes of action, but rather exhibit nonspecific toxicity leading to cell stress. In this work, a cellular stress panel is described, consisting of 36 biomarkers representing mitochondrial toxicity, cell stress, and cell health, measured predominantly using high content imaging. To evaluate the panel, data were generated for 13 substances at exposures consistent with typical use-case scenarios. These included some that have been shown to cause adverse effects in a proportion of exposed humans and have a toxicological mode-of-action associated with cellular stress (eg, doxorubicin, troglitazone, and diclofenac), and some that are not associated with adverse effects due to cellular stress at human-relevant exposures (eg, caffeine, niacinamide, and phenoxyethanol). For each substance, concentration response data were generated for each biomarker at 3 timepoints. A Bayesian model was then developed to quantify the evidence for a biological response, and if present, a credibility range for the estimated point of departure (PoD) was determined. PoDs were compared with the plasma Cmax associated with the typical substance exposures, and indicated a clear differentiation between "low" risk and "high" risk chemical exposure scenarios. Developing robust methods to characterize the in vitro bioactivity of xenobiotics is an important part of non-animal safety assessment. The results presented in this work show that the cellular stress panel can be used, together with other new approach methodologies, to identify chemical exposures that are protective of consumer health.


Assuntos
Qualidade de Produtos para o Consumidor , Medição de Risco/métodos , Estresse Fisiológico , Animais , Teorema de Bayes , Biomarcadores , Características da Família , Humanos , Xenobióticos
19.
Regul Toxicol Pharmacol ; 114: 104661, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32315674

RESUMO

Selection of appropriate fit-for-purpose in vitro and in silico models is critical for non-animal safety assessment of chemical-induced hepatoxicity. The present study evaluated the feasibility of integrating in vitro data from three-dimensionally (3D)-cultured HepaRG cells and physiologically based pharmacokinetic (PBPK) modeling to predict chemical-induced liver toxicity. A 3D organoid culture system was established using an ultralow attachment method. HepaRG cells cultured in a two-dimensional (2D) monolayer and under 3D conditions were exposed to acetaminophen (APAP) at concentrations of 0.16-20 mM. The results showed that the viability of both 3D- and 2D cultured cells was significantly decreased by APAP in a concentration-dependent manner. Furthermore, 3D cultures were more sensitive to APAP-induced mitochondrial damage than 2D cultures were, based on measurements of mitochondrial superoxide accumulation and mitochondrial membrane potential loss. PBPK simulations using nominal in vitro concentrations showed that the APAP concentration eliciting mitochondrial damage was closer to the predicted peak liver concentration in humans in 3D cultures than it was in 2D cultures. In summary, our results suggest that combining in vitro data from 3D HepaRG cultures and PBPK modeling provides a promising tool for assessment of liver injury.


Assuntos
Acetaminofen/farmacocinética , Analgésicos não Narcóticos/farmacocinética , Técnicas de Cultura de Células , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Hepatócitos/efeitos dos fármacos , Modelos Biológicos , Células Cultivadas , Relação Dose-Resposta a Droga , Hepatócitos/metabolismo , Humanos
20.
Toxicol Sci ; 176(1): 236-252, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32275751

RESUMO

Next-Generation Risk Assessment is defined as an exposure-led, hypothesis-driven risk assessment approach that integrates new approach methodologies (NAMs) to assure safety without the use of animal testing. These principles were applied to a hypothetical safety assessment of 0.1% coumarin in face cream and body lotion. For the purpose of evaluating the use of NAMs, existing animal and human data on coumarin were excluded. Internal concentrations (plasma Cmax) were estimated using a physiologically based kinetic model for dermally applied coumarin. Systemic toxicity was assessed using a battery of in vitro NAMs to identify points of departure (PoDs) for a variety of biological effects such as receptor-mediated and immunomodulatory effects (Eurofins SafetyScreen44 and BioMap Diversity 8 Panel, respectively), and general bioactivity (ToxCast data, an in vitro cell stress panel and high-throughput transcriptomics). In addition, in silico alerts for genotoxicity were followed up with the ToxTracker tool. The PoDs from the in vitro assays were plotted against the calculated in vivo exposure to calculate a margin of safety with associated uncertainty. The predicted Cmax values for face cream and body lotion were lower than all PoDs with margin of safety higher than 100. Furthermore, coumarin was not genotoxic, did not bind to any of the 44 receptors tested and did not show any immunomodulatory effects at consumer-relevant exposures. In conclusion, this case study demonstrated the value of integrating exposure science, computational modeling and in vitro bioactivity data, to reach a safety decision without animal data.


Assuntos
Cosméticos , Cumarínicos/toxicidade , Testes de Toxicidade , Animais , Biologia Computacional , Simulação por Computador , Qualidade de Produtos para o Consumidor , Características da Família , Humanos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA