Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Arch Toxicol ; 98(4): 1151-1161, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368281

RESUMO

Dimethyl fumarate (DMF) is an old drug used for psoriasis treatment that has recently been repurposed to treat relapse-remitting multiple sclerosis, mostly due to its neuro- and immunomodulatory actions. However, mining of a pharmacovigilance database recently ranked DMF as the second pharmaceutical most associated with cognitive adverse events. To our best knowledge, the signaling mechanisms underlying its therapeutic and neurotoxic outcomes remain mostly undisclosed. This work thus represents the first-hand assessment of DMF-induced metabolic changes in undifferentiated SH-SY5Y human neuroblastoma cells, through an untargeted metabolomic approach using gas chromatography-mass spectrometry (GC-MS). The endometabolome was analyzed following 24 h and 96 h of exposure to two pharmacologically relevant DMF concentrations (0.1 and 10 µM). None of these conditions significantly reduced metabolic activity (MTT reduction assay). Our data showed that 24 h-exposure to DMF at both concentrations tested mainly affected metabolic pathways involved in mitochondrial activity (e.g., citric acid cycle, de novo triacylglycerol biosynthesis), and the synthesis of catecholamines and serotonin by changing the levels of their respective precursors, namely phenylalanine (0.68-fold decrease for 10 µM DMF vs vehicle), and tryptophan (1.36-fold increase for 0.1 µM DMF vs vehicle). Interestingly, taurine, whose levels can be modulated via Nrf2 signaling (DMF's primary target), emerged as a key mediator of DMF's neuronal action, displaying a 3.86-fold increase and 0.27-fold decrease for 10 µM DMF at 24 h and 96 h, respectively. A 96 h-exposure to DMF seemed to mainly trigger pathways associated with glucose production (e.g., gluconeogenesis, glucose-alanine cycle, malate-aspartate shuttle), possibly related to the metabolism of DMF into monomethyl fumarate and its further conversion into glucose via activation of the citric acid cycle. Overall, our data contribute to improving the understanding of the events associated with neuronal exposure to DMF.


Assuntos
Fumarato de Dimetilo , Neuroblastoma , Humanos , Fumarato de Dimetilo/toxicidade , Fumarato de Dimetilo/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Neuroblastoma/metabolismo , Neurônios/metabolismo , Glucose/metabolismo
2.
J Oncol Pharm Pract ; 30(2): 257-262, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37151079

RESUMO

Pharmacy personnel that manipulate cytotoxic drugs are under continuous exposure risk. Therefore, training and strict adherence to recommended practices should always be promoted. The main objective of this study was to develop and apply a safe, effective and low-cost method for the training and assessment of the safe handling of cytotoxic drugs, using commercially available tonic water. To evaluate the potential of tonic water as a replacement marker for quinine hydrochloride, deliberate spills of 1 mL of four different tonic waters (one coloured and three non-coloured) were analysed under ultraviolet light (300-400 nm). The pigmented sample did not produce fluorescence under ultraviolet (UV) light. The three commercially available tonic waters that exhibited fluorescence were further analysed by UV/Vis spectrophotometry (300-500 nm). Afterwards, a protocol of simulated manipulation of cytotoxic drugs was developed and applied to 12 pharmacy technicians, that prepared 24 intravenous bags according to recommended routine procedures using tonic water. Participants responded to a brief questionnaire to evaluate the adequacy and applicability of the activity. Seven of the participants had spillages during manipulation, the majority of which recorded during manipulation with needles. All participants scored the tonic water manipulation simulation with 4 or 5 points for simplicity, efficiency and feasibility. The obtained results suggest that tonic water can be used to simulate the manipulation of cytotoxic drugs in training and assessment programs. By using this replacement marker for quinine hydrochloride, it is possible to perform a more cost-effective, yet equally effective, assessment.


Assuntos
Antineoplásicos , Exposição Ocupacional , Farmácia , Humanos , Quinina/análise , Exposição Ocupacional/prevenção & controle , Exposição Ocupacional/análise , Antineoplásicos/uso terapêutico , Água/análise
3.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901939

RESUMO

Immunohistochemical staining of cell and molecular targets in brain samples is a powerful tool that can provide valuable information on neurological mechanisms. However, post-processing of photomicrographs acquired after 3,3'-Diaminobenzidine (DAB) staining is particularly challenging due to the complexity associated with the size, samples number, analyzed targets, image quality, and even the subjectivity inherent to the analysis by different users. Conventionally, this analysis relies on the manual quantification of distinct parameters (e.g., the number and size of cells and the number and length of cell branching) in a large set of images. These represent extremely time-consuming and complex tasks, defaulting the processing of high amounts of information. Here we describe an improved semi-automatic method to quantify glial fibrillary acidic protein (GFAP)-labelled astrocytes in immunohistochemistry images of rat brains, at magnifications as low as 20×. This method is a straightforward adaptation of the Young & Morrison method, using ImageJ's plugin Skeletonize, coupled with intuitive data processing in datasheet-based software. It allows swifter and more efficient post-processing of brain tissue samples, regarding astrocyte size and number quantification, the total area occupied, as well as astrocyte branching and branch length (indicators of astrocyte activation), thus contributing to better understand the possible inflammatory response developed by astrocytes.


Assuntos
Astrócitos , Encéfalo , Ratos , Animais , Astrócitos/metabolismo , Imuno-Histoquímica , Proteína Glial Fibrilar Ácida/metabolismo , Encéfalo/metabolismo , Cabeça , Neurogênese
4.
Pharmacol Res ; 187: 106603, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36516885

RESUMO

Mitochondria play a critical role in the regulation of several biological processes (e.g., programmed cell death, inflammation, neurotransmission, cell differentiation). In recent years, accumulating findings have evidenced that cannabinoids, a group of endogenous and exogenous (synthetic and plant-derived) psychoactive compounds that bind to cannabinoid receptors, may modulate mitochondrial function and dynamics. As such, mitochondria have gained increasing interest as central mediators in cannabinoids' pharmacological and toxicological signatures. Here, we review the mechanisms underlying the cannabinoids' modulation of mitochondrial activity and dynamics, as well as the potential implications of such mitochondrial processes' disruption on cell homeostasis and disease. Interestingly, cannabinoids may target different mitochondrial processes (e.g., regulation of intracellular calcium levels, bioenergetic metabolism, apoptosis, and mitochondrial dynamics, including mitochondrial fission and fusion, transport, mitophagy, and biogenesis), by modulating multiple and complex signaling pathways. Of note, the outcome may depend on the experimental models used, as well as the chemical structure, concentration, and exposure settings to the cannabinoid, originating equivocal data. Notably, this interaction seems to represent not only an important feature of cannabinoids' toxicological signatures, with potential implications for the onset of distinct pathological conditions (e.g., cancer, neurodegenerative diseases, metabolic syndromes), but also an opportunity to develop novel therapeutic strategies for such pathologies, which is also discussed in this review.


Assuntos
Canabinoides , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Canabinoides/análise , Mitocôndrias/metabolismo , Transmissão Sináptica , Mitofagia , Metabolismo Energético
5.
Annu Rev Pharmacol Toxicol ; 63: 187-209, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35914767

RESUMO

Synthetic cannabinoids (SCs) are a chemically diverse group of new psychoactive substances (NPSs) that target the endocannabinoid system, triggering a plethora of actions (e.g., elevated mood sensation, relaxation, appetite stimulation) that resemble, but are more intense than, those induced by cannabis. Although some of these effects have been explored for therapeutic applications, anticipated stronger psychoactive effects than cannabis and reduced risk perception have increased the recreational use of SCs, which have dominated the NPS market in the United States and Europe over the past decade. However, rising SC-related intoxications and deaths represent a major public health concern and embody a major challenge for policy makers. Here, we review the pharmacology and toxicology of SCs. A thorough characterization of SCs' pharmacodynamics and toxicodynamics is important to better understand the main mechanisms underlying acute and chronic effects of SCs, interpret the clinical/pathological findings related to SC use, and improve SC risk awareness.


Assuntos
Canabinoides , Humanos , Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Endocanabinoides
6.
Toxins (Basel) ; 14(4)2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35448887

RESUMO

Cocaine is one of the most consumed stimulants throughout the world, as official sources report. It is a naturally occurring sympathomimetic tropane alkaloid derived from the leaves of Erythroxylon coca, which has been used by South American locals for millennia. Cocaine can usually be found in two forms, cocaine hydrochloride, a white powder, or 'crack' cocaine, the free base. While the first is commonly administered by insufflation ('snorting') or intravenously, the second is adapted for inhalation (smoking). Cocaine can exert local anaesthetic action by inhibiting voltage-gated sodium channels, thus halting electrical impulse propagation; cocaine also impacts neurotransmission by hindering monoamine reuptake, particularly dopamine, from the synaptic cleft. The excess of available dopamine for postsynaptic activation mediates the pleasurable effects reported by users and contributes to the addictive potential and toxic effects of the drug. Cocaine is metabolised (mostly hepatically) into two main metabolites, ecgonine methyl ester and benzoylecgonine. Other metabolites include, for example, norcocaine and cocaethylene, both displaying pharmacological action, and the last one constituting a biomarker for co-consumption of cocaine with alcohol. This review provides a brief overview of cocaine's prevalence and patterns of use, its physical-chemical properties and methods for analysis, pharmacokinetics, pharmacodynamics, and multi-level toxicity.


Assuntos
Cocaína , Dopamina , Cocaína/análise , Cocaína/metabolismo , Cocaína/toxicidade , Etanol
8.
Toxicology ; 463: 152988, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34655687

RESUMO

4-Fluoromethamphetamine (4-FMA) is an amphetamine-like psychoactive substance with recognized entactogenic and stimulant effects, but hitherto unclear toxicological mechanisms. Taking into consideration that the vast majority of 4-FMA users consume this substance through oral route, the liver is expected to be highly exposed. The aim of this work was to determine the hepatotoxic potential of 4-FMA using in vitro hepatocellular models: primary rat hepatocytes (PRH), human hepatoma cell lines HepaRG and HepG2, and resorting to concentrations ranging from 37 µM to 30 mM, during a 24-h exposure. EC50 values, estimated from the MTT viability assay data, were 2.21 mM, 5.59 mM and 9.57 mM, for each model, respectively. The most sensitive model, PRH, was then co-exposed to 4-FMA and cytochrome P450 (CYP) inhibitors to investigate the influence of metabolism on the toxicity of 4-FMA. Results show that CYP2E1, CYP3A4 and CYP2D6 have major roles in 4-FMA cytotoxicity. Inhibition of CYP2D6 and CYP3A4 led to left-geared shifts in the concentration-response curves of 4-FMA, hinting at a role of these metabolic enzymes for detoxifying 4-FMA, while CYP2E1 inhibition pointed towards a toxifying role of this enzyme in 4-FMA metabolism at physiologically-relevant concentrations. The drug also destabilised mitochondrial membrane potential and decreased ATP levels, increased the production of reactive oxygen and nitrogen species and compromised thiol antioxidant defences. 4-FMA further affected PRH integrity by interfering with the machinery of apoptosis and necrosis, increasing the activity of initiator and effector caspases, and causing loss of cell membrane integrity. Potential for autophagy was also observed. This research contributes to the growing body of evidence regarding the toxicity of new psychoactive substances, in particular regarding their hepatotoxic effects; the apparent influence of metabolism over the resulting cytotoxicity of 4-FMA shows that there is a substantial degree of unpredictability of the consequences for users that could be independent of the dose.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Metanfetamina/análogos & derivados , Metanfetamina/toxicidade , Psicotrópicos/toxicidade , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A/metabolismo , Relação Dose-Resposta a Droga , Células Hep G2 , Hepatócitos/patologia , Humanos , Fígado/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Metanfetamina/administração & dosagem , Ratos , Ratos Wistar
9.
Pharmaceuticals (Basel) ; 14(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669071

RESUMO

ADB-FUBINACA and AMB-FUBINACA are two synthetic indazole-derived cannabinoid receptor agonists, up to 140- and 85-fold more potent, respectively, than trans-∆9-tetrahydrocannabinol (∆9-THC), the main psychoactive compound of cannabis. Synthesised in 2009 as a pharmaceutical drug candidate, the recreational use of ADB-FUBINACA was first reported in 2013 in Japan, with fatal cases being described in 2015. ADB-FUBINACA is one of the most apprehended and consumed synthetic cannabinoid (SC), following AMB-FUBINACA, which emerged in 2014 as a drug of abuse and has since been responsible for several intoxication and death outbreaks. Here, we critically review the physicochemical properties, detection methods, prevalence, biological effects, pharmacodynamics and pharmacokinetics of both drugs. When smoked, these SCs produce almost immediate effects (about 10 to 15 s after use) that last up to 60 min. They are rapidly and extensively metabolised, being the O-demethylated metabolite of AMB-FUBINACA, 2-(1-(4-fluorobenzyl)-1H-indazole-3-carboxamide)-3-methylbutanoic acid, the main excreted in urine, while for ADB-FUBINACA the main biomarkers are the hydroxdimethylpropyl ADB-FUBINACA, hydroxydehydrodimethylpropyl ADB-FUBINACA and hydroxylindazole ADB-FUBINACA. ADB-FUBINACA and AMB-FUBINACA display full agonism of the CB1 receptor, this being responsible for their cardiovascular and neurological effects (e.g., altered perception, agitation, anxiety, paranoia, hallucinations, loss of consciousness and memory, chest pain, hypertension, tachycardia, seizures). This review highlights the urgent requirement for additional studies on the toxicokinetic properties of AMB-FUBINACA and ADB-FUBINACA, as this is imperative to improve the methods for detecting and quantifying these drugs and to determine the best exposure markers in the various biological matrices. Furthermore, it stresses the need for clinicians and pathologists involved in the management of these intoxications to describe their findings in the scientific literature, thus assisting in the risk assessment and treatment of the harmful effects of these drugs in future medical and forensic investigations.

10.
Arch Toxicol ; 95(4): 1443-1462, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33550444

RESUMO

Synthetic cathinones are among the most popular new psychoactive substances, being abused for their stimulant properties, which are similar to those of amphetamine and 3,4-methylenedioxymethamphetamine (MDMA). Considering that the liver is a likely target for cathinones-induced toxicity, and for their metabolic activation/detoxification, we aimed to determine the hepatotoxicity of three commonly abused synthetic cathinones: butylone, α-methylamino-butyrophenone (buphedrone) and 3,4-dimethylmethcathinone (3,4-DMMC). We characterized their cytotoxic profile in primary rat hepatocytes (PRH) and in the HepaRG and HepG2 cell lines. PRH was the most sensitive cell model, showing the lowest EC50 values for all three substances (0.158 mM for 3,4-DMMC; 1.21 mM for butylone; 1.57 mM for buphedrone). Co-exposure of PRH to the synthetic cathinones and CYP450 inhibitors (selective and non-selective) proved that hepatic metabolism reduced the toxicity of buphedrone but increased that of butylone and 3,4-DMMC. All compounds were able to increase oxidative stress, disrupting mitochondrial homeostasis and inducing apoptotic and necrotic features, while also increasing the occurrence of acidic vesicular organelles in PRH, compatible with autophagic activation. In conclusion, butylone, buphedrone and 3,4-DMMC have hepatotoxic potential, and their toxicity lies in the interference with a number of homeostatic processes, while being influenced by their metabolic fate.


Assuntos
3,4-Metilenodioxianfetamina/análogos & derivados , Butirofenonas/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Metilaminas/toxicidade , Propiofenonas/toxicidade , 3,4-Metilenodioxianfetamina/administração & dosagem , 3,4-Metilenodioxianfetamina/toxicidade , Animais , Autofagia/efeitos dos fármacos , Butirofenonas/administração & dosagem , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/patologia , Drogas Desenhadas/administração & dosagem , Drogas Desenhadas/toxicidade , Relação Dose-Resposta a Droga , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Masculino , Metilaminas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Propiofenonas/administração & dosagem , Ratos , Ratos Wistar
11.
Drug Test Anal ; 13(3): 474-504, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33440053

RESUMO

Despite the impressive innate physical abilities of horses, camels, greyhounds, or pigeons, doping agents might be administered to these animals to improve their performance. To control these illegal practices, anti-doping analytical methodologies have been developed. This review compiles the analytical methods that have been published for the detection of prohibited substances administered to animals involved in sports over 30 years. Relevant papers meeting the search criteria that discussed analytical methods aiming to detect and/or quantify doping substances in animal biological matrices published from 1990 to 2019 were considered. A total of 317 studies were included, of which 298 were related to horses, demonstrating significant advances toward the development of doping detection methods for equine sports. However, analytical methods for the detection of doping agents in sports involving other species are lacking. Due to enhanced accuracy and specificity, chromatographic analysis coupled to mass spectrometry detection is preferred over immunoassays. Regarding biological matrices, blood and urine remain the first choice, although alternative biological matrices, such as hair and feces, have been considered. With the increasing number and type of drugs used as doping agents, the analytes addressed in the published papers are diverse. It is very important to continue to detect and quantify these drugs, recognizing those that are most frequently used, in order to punish the abusers, protect animals' health, and ensure a healthier and genuine competition.


Assuntos
Dopagem Esportivo/prevenção & controle , Substâncias para Melhoria do Desempenho/análise , Detecção do Abuso de Substâncias/métodos , Animais , Líquidos Corporais/química , Cavalos
12.
Molecules ; 27(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35011420

RESUMO

Polyphenols are a large family of natural compounds widely used in cosmetic products due to their antioxidant and anti-inflammatory beneficial properties and their ability to prevent UV radiation-induced oxidative stress. Since these compounds present chromophores and are applied directly to the skin, they can react with sunlight and exert phototoxic effects. The available scientific information on the phototoxic potential of these natural compounds is scarce, and thus the aim of this study was to evaluate the photoreactivity and phototoxicity of five phenolic antioxidants with documented use in cosmetic products. A standard ROS assay was validated and applied to screen the photoreactivity of the natural phenolic antioxidants caffeic acid, ferulic acid, p-coumaric acid, 3,4-dihydroxyphenylacetic acid (DOPAC), and rutin. The phototoxicity potential was determined by using a human keratinocyte cell line (HaCaT), based on the 3T3 Neutral Red Uptake phototoxicity test. Although all studied phenolic antioxidants absorbed UV/Vis radiation in the range of 290 to 700 nm, only DOPAC was able to generate singlet oxygen. The generation of reactive oxygen species is an early-stage chemical reaction as part of the phototoxicity mechanism. Yet, none of the studied compounds decreased the viability of keratinocytes after irradiation, leading to the conclusion that they do not have phototoxic potential. The data obtained with this work suggests that these compounds are safe when incorporated in cosmetic products.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Animais , Bioensaio/métodos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dermatite Fototóxica , Humanos , Camundongos , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo
13.
Toxicol In Vitro ; 70: 105046, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33147519

RESUMO

Gold nanoparticles (AuNPs) have huge potential for various biomedical applications, but their successful use depends on their uptake and possible toxicity in the liver, their main site for accumulation. Therefore, in this work we compared the cytotoxic effects induced by AuNPs with different size (~ 15 nm and 60 nm), shape (nanospheres and nanostars) and capping [citrate- or 11-mercaptoundecanoic acid (MUA)], in human HepaRG cells or primary rat hepatocytes (PRH) cultivated with serum-free or Foetal Bovine Serum (FBS)-supplemented media. The safety assessment of the AuNPs demonstrated that overall they present low toxicity towards hepatic cells. Among all the tested AuNPs, the smaller 15 nm spheres displayed the highest toxicity. The toxicological effect was capping, size and cell-type dependent with citrate-capping more toxic than MUA (PRH with FBS), the 15 nm AuNPs more toxic than 60 nm counterparts and PRH more sensitive, as compared to the HepaRG cells. The incubation with FBS-free media produced aggregation of AuNPs while its presence greatly influenced the toxicity outcomes. The cellular uptake of AuNPs was shape, size and capping dependent in PRH cultivated in FBS-supplemented media, and significantly different between the two types of cells with extensively higher internalization of AuNPs in PRH, as compared to the HepaRG cells. These data show that the physical-chemical properties of AuNPs, including size and shape, as well as the type of cellular model, greatly influence the interaction of the AuNPs with the biological environment and consequently, their toxicological effects.


Assuntos
Ouro/toxicidade , Hepatócitos/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Animais , Transporte Biológico , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Masculino , Ratos Wistar
14.
Pharmacol Res ; 162: 105237, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053442

RESUMO

The endocannabinoid (eCB) system is a complex system comprising endogenous cannabinoids (eCBs), their synthesis and degradation enzymes, and cannabinoid receptors. These elements crucially regulate several biological processes during neurodevelopment, such as proliferation, differentiation, and migration. Recently, eCBs were also reported to have an epigenetic action on genes that play key functions in the neurotransmitter signaling, consequently regulating their expression. In turn, epigenetic modifications (e.g. DNA methylation, histone modifications) may also modulate the function of eCB system's elements. For example, the expression of the cnr gene in the central nervous system may be epigenetically regulated (e.g. DNA methylation, histone modifications), thus altering the function of the cannabinoid receptor type-1 (CB1R). Considering the importance of the eCB system during neurodevelopment, it is thus reasonable to expect that alterations in this interaction between the eCB system and epigenetic modifications may give rise to neurodevelopmental disorders. Here, we review key concepts related to the regulation of neuronal function by the eCB system and the different types of epigenetic modifications. In particular, we focus on the mechanisms involved in the intricate interplay between both signaling systems and how they control cell fate during neurodevelopment. Noteworthy, such mechanistic understanding assumes high relevance considering the implications of the dysregulation of key neurogenic processes towards the onset of neurodevelopment-related disorders. Moreover, considering the increasing popularity of cannabis and its synthetic derivatives among young adults, it becomes of utmost importance to understand how exogenous cannabinoids may epigenetically impact neurodevelopment.


Assuntos
Endocanabinoides/metabolismo , Epigênese Genética , Neurogênese/genética , Animais , Canabinoides/farmacologia , Humanos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Receptores de Canabinoides/metabolismo , Transdução de Sinais
15.
Int J Mol Sci ; 21(17)2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32872617

RESUMO

Recreational use of synthetic cannabinoids (SCs) before and during pregnancy poses a major public health risk, due to the potential onset of neurodevelopmental disorders in the offspring. Herein, we report the assessment of the neurotoxic potential of two commonly abused SCs, THJ-2201 and 5F-PB22, particularly focusing on how they affect neuronal differentiation in vitro. Differentiation ratios, total neurite length, and neuronal marker expression were assessed in NG108-15 neuroblastoma x glioma cells exposed to the SCs at non-toxic, biologically relevant concentrations (≤1 µM), either in acute or repeated exposure settings. Both SCs enhanced differentiation ratios and total neurite length of NG108-15 cells near two-fold compared to vehicle-treated cells, in a CB1R activation-dependent way, as the CB1R blockade with a specific antagonist (SR141718) abrogated SC-induced effects. Interestingly, repeated 5F-PB22 exposure was required to reach effects similar to a single THJ-2201 dose. Cell viability and proliferation, mitochondrial membrane potential, and intracellular ATP levels were also determined. The tested SCs increased mitochondrial tetramethyl rhodamine ethyl ester (TMRE) accumulation after 24 h at biologically relevant concentrations but did not affect any of the other toxicological parameters. Overall, we report firsthand the CB1R-mediated enhancement of neurodifferentiation by 5F-PB22 and THJ-2201 at biologically relevant concentrations.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Diferenciação Celular , Glioma/patologia , Indazóis/farmacologia , Indóis/farmacologia , Naftalenos/farmacologia , Neuroblastoma/patologia , Quinolinas/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Animais , Sobrevivência Celular , Glioma/tratamento farmacológico , Glioma/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Ratos , Células Tumorais Cultivadas
16.
Molecules ; 25(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560201

RESUMO

Antioxidants have long been used in the cosmetic industry to prevent skin photoaging, which is mediated by oxidative stress, making the search for new antioxidant compounds highly desirable in this field. Naturally occurring xanthones are polyphenolic compounds that can be found in microorganisms, fungi, lichens, and some higher plants. This class of polyphenols has a privileged scaffold that grants them several biological activities. We have previously identified simple oxygenated xanthones as promising antioxidants and disclosed as hit, 1,2-dihydroxyxanthone (1). Herein, we synthesized and studied the potential of xanthones with different polyoxygenated patterns as skin antiphotoaging ingredients. In the DPPH antioxidant assay, two newly synthesized derivatives showed IC50 values in the same range as ascorbic acid. The synthesized xanthones were discovered to be excellent tyrosinase inhibitors and weak to moderate collagenase and elastase inhibitors but no activity was revealed against hyaluronidase. Their metal-chelating effect (FeCl3 and CuCl2) as well as their stability at different pH values were characterized to understand their potential to be used as future cosmetic active agents. Among the synthesized polyoxygenated xanthones, 1,2-dihydroxyxanthone (1) was reinforced as the most promising, exhibiting a dual ability to protect the skin against UV damage by combining antioxidant/metal-chelating properties with UV-filter capacity and revealed to be more stable in the pH range that is close to the pH of the skin. Lastly, the phototoxicity of 1,2-dihydroxyxanthone (1) was evaluated in a human keratinocyte cell line and no phototoxicity was observed in the concentration range tested.


Assuntos
Antioxidantes , Queratinócitos/metabolismo , Envelhecimento da Pele/efeitos dos fármacos , Pele/metabolismo , Protetores Solares , Xantonas , Antioxidantes/efeitos adversos , Antioxidantes/química , Antioxidantes/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Queratinócitos/patologia , Pele/patologia , Envelhecimento da Pele/efeitos da radiação , Protetores Solares/efeitos adversos , Protetores Solares/química , Protetores Solares/farmacologia , Raios Ultravioleta/efeitos adversos , Xantonas/efeitos adversos , Xantonas/química , Xantonas/farmacologia
17.
Arch Toxicol ; 94(8): 2829-2845, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32504122

RESUMO

Drug-induced Mood- and Cognition-related adverse events (MCAEs) are often only detected during the clinical trial phases of drug development, or even after marketing, thus posing a major safety concern and a challenge for both pharmaceutical companies and clinicians. To fill some gaps in the understanding and elucidate potential biological mechanisms of action frequently associated with MCAEs, we present a unique workflow linking observational population data with the available knowledge at molecular, cellular, and psychopharmacology levels. It is based on statistical analysis of pharmacovigilance reports and subsequent signaling pathway analyses, followed by evidence-based expert manual curation of the outcomes. Our analysis: (a) ranked pharmaceuticals with high occurrence of such adverse events (AEs), based on disproportionality analysis of the FDA Adverse Event Reporting System (FAERS) database, and (b) identified 120 associated genes and common pathway nodes possibly underlying MCAEs. Nearly two-thirds of the identified genes were related to immune modulation, which supports the critical involvement of immune cells and their responses in the regulation of the central nervous system function. This finding also means that pharmaceuticals with a negligible central nervous system exposure may induce MCAEs through dysregulation of the peripheral immune system. Knowledge gained through this workflow unravels putative hallmark biological targets and mediators of drug-induced mood and cognitive disorders that need to be further assessed and validated in experimental models. Thereafter, they can be used to substantially improve in silico/in vitro/in vivo tools for predicting these adversities at a preclinical stage.


Assuntos
Sistemas de Notificação de Reações Adversas a Medicamentos , Afeto/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Mineração de Dados , Transtornos do Humor/induzido quimicamente , Farmacovigilância , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/psicologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Transtornos do Humor/genética , Transtornos do Humor/metabolismo , Transtornos do Humor/psicologia , Mapas de Interação de Proteínas , Medição de Risco , Transdução de Sinais
18.
Nanomaterials (Basel) ; 10(5)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32455923

RESUMO

Gold nanoparticles (AuNPs) are highly attractive for biomedical applications. Therefore, several in vitro and in vivo studies have addressed their safety evaluation. Nevertheless, there is a lack of knowledge regarding their potential detrimental effect on human kidney. To evaluate this effect, AuNPs with different sizes (13 nm and 60 nm), shapes (spheres and stars), and coated with 11-mercaptoundecanoic acid (MUA) or with sodium citrate, were synthesized, characterized, and their toxicological effects evaluated 24 h after incubation with a proximal tubular cell line derived from normal human kidney (HK-2). After exposure, viability was assessed by the MTT assay. Changes in lysosomal integrity, mitochondrial membrane potential (ΔΨm), reactive species (ROS/RNS), intracellular glutathione (total GSH), and ATP were also evaluated. Apoptosis was investigated through the evaluation of the activity of caspases 3, 8 and 9. Overall, the tested AuNPs targeted mainly the mitochondria in a concentration-dependent manner. The lysosomal integrity was also affected but to a lower extent. The smaller 13 nm nanospheres (both citrate- and MUA-coated) proved to be the most toxic among all types of AuNPs, increasing ROS production and decreasing mitochondrial membrane potential (p ≤ 0.01). For the MUA-coated 13 nm nanospheres, these effects were associated also to increased levels of total glutathione (p ≤ 0.01) and enhanced ATP production (p ≤ 0.05). Programmed cell death was detected through the activation of both extrinsic and intrinsic pathways (caspase 8 and 9) (p ≤ 0.05). We found that the larger 60 nm AuNPs, both nanospheres and nanostars, are apparently less toxic than their smaller counter parts. Considering the results herein presented, it should be taken into consideration that even if renal clearance of the AuNPs is desirable, since it would prevent accumulation and detrimental effects in other organs, a possible intracellular accumulation of AuNPs in kidneys can induce cell damage and later compromise kidney function.

19.
Drug Alcohol Depend ; 212: 108045, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32460203

RESUMO

Synthetic phenethylamines are widely abused drugs, comprising new psychoactive substances such as synthetic cathinones, but also well-known amphetamines such as methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy). Cathinones and amphetamines share many toxicodynamic mechanisms. One of their potentially life-threatening consequences, particularly of MDMA, is serotonin-mediated hyponatraemia. Herein, we review the state of the art on phenethylamine-induced hyponatremia; discuss the mechanisms involved; and present the preventive and therapeutic measures. Hyponatraemia mediated by phenethylamines results from increased secretion of antidiuretic hormone (ADH) and consequent kidney water reabsorption, additionally involving diaphoresis and polydipsia. Data for MDMA suggest that acute hyponatraemia elicited by cathinones may also be a consequence of metabolic activation. The literature often reveals hyponatraemia-associated complications such as cerebral oedema, cerebellar tonsillar herniation and coma that may evolve to a fatal outcome, particularly in women. Ready availability of fluids and the recommendation to drink copiously at the rave scene to counteract hyperthermia, often precipitate water intoxication. Users should be advised about the importance of controlling fluid intake while using phenethylamines. At early signs of adverse effects, medical assistance should be promptly sought. Severe hyponatraemia (<130 mmol sodium/L plasma) may be corrected with hypertonic saline or suppression of fluid intake. Also, clinicians should be made aware of the hyponatraemic potential of these drugs and encouraged to report future cases of toxicity to increase knowledge on this potentially lethal outcome.


Assuntos
Ingestão de Líquidos/fisiologia , Hiponatremia/induzido quimicamente , Hiponatremia/metabolismo , Drogas Ilícitas/efeitos adversos , Fenetilaminas/efeitos adversos , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/metabolismo , Alcaloides/efeitos adversos , Anfetamina/efeitos adversos , Humanos , Hiponatremia/diagnóstico , N-Metil-3,4-Metilenodioxianfetamina/efeitos adversos , Neurofisinas/efeitos adversos , Neurofisinas/metabolismo , Precursores de Proteínas/efeitos adversos , Precursores de Proteínas/metabolismo , Vasopressinas/efeitos adversos , Vasopressinas/metabolismo
20.
Arch Toxicol ; 94(4): 1071-1083, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32078021

RESUMO

During the last decades, we have witnessed unparalleled changes in human eating habits and lifestyle, intensely influenced by cultural and social pressures. Sports practice became strongly implemented in daily routines, and visits to the gym peaked, driven by the indulgence in intensive 'weight-loss programs'. The pledge of boasting a healthy and beautiful body instigates the use of very attractive 'fat burners', which are purportedly advertised as safe products, easily available in the market and expected to quickly reduce body weight. In this context, the slimming properties of 2,4-dinitrophenol (2,4-DNP) galvanised its use as a weight-loss product, despite the drug ban for human consumption in many countries since 1938, due to its adverse effects. The main symptoms associated with 2,4-DNP intoxication, including hyperthermia, tachycardia, decreased blood pressure, and acute renal failure, motivated a worldwide warning, issued by the Interpol Anti-Doping Unit in 2015, reinforcing its hazard. Information on the effects of 2,4-DNP mainly derive from the intoxication cases reported by emergency care units, for which there is no specific antidote or treatment. This review provides a comprehensive update on 2,4-DNP use, legislation and epidemiology, chemistry and analytical methodologies for drug determination in commercial products and biological samples, pharmacokinetics and pharmacodynamics, toxicological effects, and intoxication diagnosis and management.


Assuntos
2,4-Dinitrofenol/efeitos adversos , Fármacos Antiobesidade/efeitos adversos , Exposição Dietética/estatística & dados numéricos , 2,4-Dinitrofenol/toxicidade , Fármacos Antiobesidade/toxicidade , Dieta , Comportamento Alimentar , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA