RESUMO
Capsicum spp. fruits (CFs) are a basic ingredient in the diet and have been used as active ingredients in the pharmaceutical, cosmetic, and food products, due to their antioxidant, anti-inflammatory, antiseptic, and antimicrobial properties. The antimicrobial activity is the most studied property due to its effectiveness against pathogenic species, however, few studies have focused on the mechanisms of action involved. Therefore, this review discusses the effects generated by the CFs compounds on the viability and metabolism of microorganisms, highlighting the mechanisms by which these compounds exert their antimicrobial effects. The information provided shows that CFs are mainly source of capsaicinoids and phenolic compounds responsible for the inhibition of bacteria, yeasts, and fungi, through an increase in the permeabilization of the membrane and cell wall. Also, these compounds show an antiviral effect associated with the inactivation of virus binding proteins, preventing their replication and infection. Despite this, there is still a lack of information about the mechanisms that regulate the interactions between CFs compounds and food-important-microorganisms. Therefore, future research should focus on new antimicrobial compounds from CFs for their subsequent use against novel infectious agents, mainly virus of importance in health such as SARS-CoV-2.
RESUMO
BACKGROUND: The impairment of the hepatic enzyme phenylalanine hydroxylase (PAH) causes elevation of phenylalanine levels in blood and other body fluids resulting in the most common inborn error of amino acid metabolism (phenylketonuria). Persistently high levels of phenylalanine lead to irreversible damage to the nervous system. Therefore, early diagnosis of the affected individuals is important, as it can prevent clinical manifestations of the disease. METHODS: In this report, the biochemical and genetic findings performed in 223 patients diagnosed through the Portuguese Neonatal Screening Program (PNSP) are presented. RESULTS: Overall, the results show that a high overlap exists between different types of variants and phenylalanine levels. Molecular analyses reveal a wide mutational spectrum in our population with a total of 56 previously reported variants, most of them found in compound heterozygosity (74% of the patients). Intragenic polymorphic markers were used to assess the haplotypic structure of mutated chromosomes for the most frequent variants found in homozygosity in our population (p.Ile65Thr, p.Arg158Gln, p.Leu249Phe, p.Arg261Gln, p.Val388Met, and c.1066-11G>A). CONCLUSION: Our data reveal high heterogeneity at the biochemical and molecular levels and are expected to provide a better understanding of the molecular basis of this disease and to provide clues to elucidate genotype-phenotype correlations.