Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2405622, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961635

RESUMO

The stability of hybrid organic-inorganic halide perovskite semiconductors remains a significant obstacle to their application in photovoltaics. To this end, the use of low-dimensional (LD) perovskites, which incorporate hydrophobic organic moieties, provides an effective strategy to improve their stability, yet often at the expense of their performance. To address this limitation, supramolecular engineering of noncovalent interactions between organic and inorganic components has shown potential by relying on hydrogen bonding and conventional van der Waals interactions. Here, the capacity to access novel LD perovskite structures that uniquely assemble through unorthodox S-mediated interactions is explored by incorporating benzothiadiazole-based moieties. The formation of S-mediated LD structures is demonstrated, including one-dimensional (1D) and layered two-dimensional (2D) perovskite phases assembled via chalcogen bonding and S-π interactions, through a combination of techniques, such as single crystal and thin film X-ray diffraction, as well as solid-state NMR spectroscopy, complemented by molecular dynamics simulations, density functional theory calculations, and optoelectronic characterization, revealing superior conductivities of S-mediated LD perovskites. The resulting materials are applied in n-i-p and p-i-n perovskite solar cells, demonstrating enhancements in performance and operational stability that reveal a versatile supramolecular strategy in photovoltaics.

2.
J Am Chem Soc ; 146(14): 9741-9754, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38551288

RESUMO

Copper-rich sulfides are very promising for energy conversion applications due to their environmental compatibility, cost effectiveness, and earth abundance. Based on a comparative analysis of the structural and transport properties of Cu3BiS3 with those of tetrahedrite (Cu12Sb4S13) and other Cu-rich sulfides, we highlight the role of the cationic coordination types and networks on the electrical and thermal properties. By precession-assisted 3D electron diffraction analysis, we find very high anisotropic thermal vibration of copper attributed to its 3-fold coordination, with an anisotropic atomic displacement parameter up to 0.09 Å2. Density functional theory calculations reveal that these Cu atoms are weakly bonded and give rise to low-energy Einstein-like vibrational modes that strongly scatter heat-carrying acoustic phonons, leading to ultralow thermal conductivity. Importantly, we demonstrate that the 3-fold coordination of copper in Cu3BiS3 and in other copper-rich sulfides constituted of interconnected CuS3 networks causes a hole blockade. This phenomenon hinders the possibility of optimizing the carrier concentration and electronic properties through mixed valency Cu+/Cu2+, differently from tetrahedrite and most other copper-rich chalcogenides, where the main interconnected Cu-S network is built of CuS4 tetrahedra. The comparison with various copper-rich sulfides demonstrates that seeking for frameworks characterized by the coexistence of tetrahedral and 3-fold coordinated copper is very attractive for the discovery of efficient thermoelectric copper-rich sulfides. Considering that lattice vibrations and carrier concentration are key factors for engineering transport phenomena (electronic, phonon, ionic, etc.) in copper-rich chalcogenides for various types of applications, our findings improve the guidelines for the design of materials enabling sustainable energy solutions with wide-ranging applications.

3.
Adv Mater ; 36(13): e2303869, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37632843

RESUMO

High-performance perovskite solar cells (PSCs) typically require interfacial passivation, yet this is challenging for the buried interface, owing to the dissolution of passivation agents during the deposition of perovskites. Here, this limitation is overcome with in situ buried-interface passivation-achieved via directly adding a cyanoacrylic-acid-based molecular additive, namely BT-T, into the perovskite precursor solution. Classical and ab initio molecular dynamics simulations reveal that BT-T spontaneously may self-assemble at the buried interface during the formation of the perovskite layer on a nickel oxide hole-transporting layer. The preferential buried-interface passivation results in facilitated hole transfer and suppressed charge recombination. In addition, residual BT-T molecules in the perovskite layer enhance its stability and homogeneity. A power-conversion efficiency (PCE) of 23.48% for 1.0 cm2 inverted-structure PSCs is reported. The encapsulated PSC retains 95.4% of its initial PCE following 1960 h maximum-power-point tracking under continuous light illumination at 65 °C (i.e., ISOS-L-2I protocol). The demonstration of operating-stable PSCs under accelerated ageing conditions represents a step closer to the commercialization of this emerging technology.

4.
Nature ; 624(7991): 289-294, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871614

RESUMO

Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts1-3. To improve efficiency further, it is crucial to combine effective light management with low interfacial losses4,5. Here we develop a conformal self-assembled monolayer (SAM) as the hole-selective contact on light-managing textured substrates. Molecular dynamics simulations indicate that cluster formation during phosphonic acid adsorption leads to incomplete SAM coverage. We devise a co-adsorbent strategy that disassembles high-order clusters, thus homogenizing the distribution of phosphonic acid molecules, and thereby minimizing interfacial recombination and improving electronic structures. We report a laboratory-measured power conversion efficiency (PCE) of 25.3% and a certified quasi-steady-state PCE of 24.8% for inverted PSCs, with a photocurrent approaching 95% of the Shockley-Queisser maximum. An encapsulated device having a PCE of 24.6% at room temperature retains 95% of its peak performance when stressed at 65 °C and 50% relative humidity following more than 1,000 h of maximum power point tracking under 1 sun illumination. This represents one of the most stable PSCs subjected to accelerated ageing: achieved with a PCE surpassing 24%. The engineering of phosphonic acid adsorption on textured substrates offers a promising avenue for efficient and stable PSCs. It is also anticipated to benefit other optoelectronic devices that require light management.

5.
Nature ; 622(7983): 493-498, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37557914

RESUMO

Lead halide perovskite light-emitting diodes (PeLEDs) have demonstrated remarkable optoelectronic performance1-3. However, there are potential toxicity issues with lead4,5 and removing lead from the best-performing PeLEDs-without compromising their high external quantum efficiencies-remains a challenge. Here we report a tautomeric-mixture-coordination-induced electron localization strategy to stabilize the lead-free tin perovskite TEA2SnI4 (TEAI is 2-thiopheneethylammonium iodide) by incorporating cyanuric acid. We demonstrate that a crucial function of the coordination is to amplify the electronic effects, even for those Sn atoms that aren't strongly bonded with cyanuric acid owing to the formation of hydrogen-bonded tautomeric dimer and trimer superstructures on the perovskite surface. This electron localization weakens adverse effects from Anderson localization and improves ordering in the crystal structure of TEA2SnI4. These factors result in a two-orders-of-magnitude reduction in the non-radiative recombination capture coefficient and an approximately twofold enhancement in the exciton binding energy. Our lead-free PeLED has an external quantum efficiency of up to 20.29%, representing a performance comparable to that of state-of-the-art lead-containing PeLEDs6-12. We anticipate that these findings will provide insights into the stabilization of Sn(II) perovskites and further the development of lead-free perovskite applications.

6.
J Am Chem Soc ; 145(16): 9313-9325, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37053084

RESUMO

Understanding the relationship between the crystal structure, chemical bonding, and lattice dynamics is crucial for the design of materials with low thermal conductivities, which are essential in fields as diverse as thermoelectrics, thermal barrier coatings, and optoelectronics. The bismuthinite-aikinite series, Cu1-x□xPb1-xBi1+xS3 (0 ≤ x ≤ 1, where □ represents a vacancy), has recently emerged as a family of n-type semiconductors with exceptionally low lattice thermal conductivities. We present a detailed investigation of the structure, electronic properties, and the vibrational spectrum of aikinite, CuPbBiS3 (x = 0), in order to elucidate the origin of its ultralow thermal conductivity (0.48 W m-1 K-1 at 573 K), which is close to the calculated minimum for amorphous and disordered materials, despite its polycrystalline nature. Inelastic neutron scattering data reveal an anharmonic optical phonon mode at ca. 30 cm-1, attributed mainly to the motion of Pb2+ cations. Analysis of neutron diffraction data, together with ab-initio molecular dynamics simulations, shows that the Pb2+ lone pairs are rotating and that, with increasing temperature, Cu+ and Pb2+ cations, which are separated at distances of ca. 3.3 Å, exhibit significantly larger displacements from their equilibrium positions than Bi3+ cations. In addition to bond heterogeneity, a temperature-dependent interaction between Cu+ and the rotating Pb2+ lone pair is a key contributor to the scattering effects that lower the thermal conductivity in aikinite. This work demonstrates that coupling of rotating lone pairs and the vibrational motion is an effective mechanism to achieve ultralow thermal conductivity in crystalline materials.

7.
J Am Chem Soc ; 144(4): 1846-1860, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35040653

RESUMO

Understanding the mechanism that connects heat transport with crystal structures and order/disorder phenomena is crucial to develop materials with ultralow thermal conductivity (κ), for thermoelectric and thermal barrier applications, and requires the study of highly pure materials. We synthesized the n-type sulfide CuPbBi5S9 with an ultralow κ value of 0.6-0.4 W m-1 K-1 in the temperature range 300-700 K. In contrast to prior studies, we show that this synthetic sulfide does not exhibit the ordered gladite mineral structure but instead forms a copper-deficient disordered aikinite structure with partial Pb replacement by Bi, according to the chemical formula Cu1/3□2/3Pb1/3Bi5/3S3. By combining experiments and lattice dynamics calculations, we elucidated that the ultralow κ value of this compound is due to very low energy optical modes associated with Pb and Bi ions and, to a smaller extent, Cu. This vibrational complexity at low energy hints at substantial anharmonic effects that contribute to enhance phonon scattering. Importantly, we show that this aikinite-type sulfide, despite being a poor semiconductor, is a potential matrix for designing novel, efficient n-type thermoelectric compounds with ultralow κ values. A drastic improvement in the carrier concentration and thermoelectric figure of merit have been obtained upon Cl for S and Bi for Pb substitution. The Cu1-x□xPb1-xBi1+xS3 series provides a new, interesting structural prototype for engineering n-type thermoelectric sulfides by controlling disorder and optimizing doping.

8.
Inorg Chem ; 60(21): 16273-16285, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34643373

RESUMO

S-based semiconductors are attracting attention as environmentally friendly materials for energy-conversion applications because of their structural complexity and chemical flexibility. Here, we show that the delicate interplay between the chemical composition and cationic order/disorder allows one to stabilize a new sphalerite derivative phase of cubic symmetry in the Cu-Sn-S diagram: Cu22Sn10S32. Interestingly, its crystal structure is characterized by a semiordered cationic distribution, with the Cu-Sn disorder being localized on one crystallographic site in a long-range-ordered matrix. The origin of the partial disorder and its influence on the electronic and thermal transport properties are addressed in detail using a combination of synchrotron X-ray diffraction, Mössbauer spectroscopy, transmission electron microscopy, theoretical modeling, and transport property measurements. These measurements evidence that this compound behaves as a pseudogap, degenerate p-type material with very low lattice thermal conductivity (0.5 W m-1 K-1 at 700 K). We show that localized disorder is very effective in lowering κL without compromising the integrity of the conductive framework. Substituting pentavalent Sb for tetravalent Sn is exploited to lower the hole concentration and doubles the thermoelectric figure of merit ZT to 0.55 at 700 K with respect to the pristine compound. The discovery of this semiordered cubic sphalerite derivative Cu22Sn10S32 furthers the understanding of the structure-property relationships in the Cu-Sn-S system and more generally in ternary and quaternary Cu-based systems.

9.
Phys Chem Chem Phys ; 22(46): 27332-27337, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33231234

RESUMO

Quantum annealers have grown in complexity to the point that quantum computations involving a few thousand qubits are now possible. In this paper, with the intentions to show the feasibility of quantum annealing to tackle problems of physical relevance, we used a simple model, compatible with the capability of current quantum annealers, to study the relative stability of graphene vacancy defects. By mapping the crucial interactions that dominate carbon-vacancy interchange onto a quadratic unconstrained binary optimization problem, our approach exploits the ground state as well as the excited states found by the quantum annealer to extract all the possible arrangements of multiple defects on the graphene sheet together with their relative formation energies. This approach reproduces known results and provides a stepping stone towards applications of quantum annealing to problems of physical-chemical interest.

10.
Nanoscale ; 11(21): 10358-10364, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31107475

RESUMO

Direct incorporation of Ni adatoms during graphene growth on Ni(111) is evidenced by scanning tunneling microscopy. The structure and energetics of the observed defects is thoroughly characterized at the atomic level on the basis of density functional theory calculations. Our results show the feasibility of a simple scalable method, which could be potentially used for the realization of macroscopic practical devices, to dope graphene with a transition metal. The method exploits the kinetics of the growth process for the incorporation of Ni adatoms in the graphene network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA