Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
bioRxiv ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39071363

RESUMO

Foxp3 + Regulatory T cells (Treg) are a subset of CD4 + T cells that play critical functions in maintaining tolerance to self antigens and suppressing autoimmunity, regulating immune responses to pathogens and have a role in the pathophysiology of anti-tumoural immunity. Treg ontogeny is complex since they are generated following recognition of self antigens in the thymus during normal T cell development (thymic Treg), but are also induced from mature conventional T cells when activated by foreign antigen with appropriate additional cues (inducible Treg). How these distinct ontogenic pathways contribute to the maintenance and function of the mature Treg compartment in health and disease remains unclear. Here, we use a combination of fate mapping approaches in mice to map the ontogeny of Treg subsets throughout life and estimate rates of production, loss and self-renewal. We find that naive and effector/memory (EM) Treg subsets exhibit distinct dynamics but are both continuously replenished by de novo generation throughout life. Using an inducible Foxp3-dependent Cre fate reporter system, we show that naive Treg and not conventional T cells, are the predominant precursors of EM Treg in adults. Tonic development of new EM Treg is not influenced by foreign antigens from commensals, rather suggesting a role for self recognition. To investigate the ontogeny of Treg development in malignant disease, we used the same fate reporter systems to characterise the Treg infiltrate of three different model tumours. In all three cases, we found that Treg derived from pre-existing, EM Treg. Together, these results reveal a predominantly linear pathway of Treg development from thymic origin to EM Treg associated with pathophysiology of malignant disease, that is driven by self antigen recognition throughout.

2.
Nat Commun ; 15(1): 1700, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402224

RESUMO

The Ataxia telangiectasia and Rad3-related (ATR) inhibitor ceralasertib in combination with the PD-L1 antibody durvalumab demonstrated encouraging clinical benefit in melanoma and lung cancer patients who progressed on immunotherapy. Here we show that modelling of intermittent ceralasertib treatment in mouse tumor models reveals CD8+ T-cell dependent antitumor activity, which is separate from the effects on tumor cells. Ceralasertib suppresses proliferating CD8+ T-cells on treatment which is rapidly reversed off-treatment. Ceralasertib causes up-regulation of type I interferon (IFNI) pathway in cancer patients and in tumor-bearing mice. IFNI is experimentally found to be a major mediator of antitumor activity of ceralasertib in combination with PD-L1 antibody. Improvement of T-cell function after ceralasertib treatment is linked to changes in myeloid cells in the tumor microenvironment. IFNI also promotes anti-proliferative effects of ceralasertib on tumor cells. Here, we report that broad immunomodulatory changes following intermittent ATR inhibition underpins the clinical therapeutic benefit and indicates its wider impact on antitumor immunity.


Assuntos
Linfócitos T CD8-Positivos , Indóis , Morfolinas , Neoplasias , Pirimidinas , Sulfonamidas , Humanos , Animais , Camundongos , Antígeno B7-H1 , Microambiente Tumoral , Linhagem Celular Tumoral , Imunoterapia , Modelos Animais de Doenças , Proteínas Mutadas de Ataxia Telangiectasia
3.
Cancer Res ; 83(23): 3989-4004, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37725704

RESUMO

Oral selective estrogen receptor degraders (SERD) could become the backbone of endocrine therapy (ET) for estrogen receptor-positive (ER+) breast cancer, as they achieve greater inhibition of ER-driven cancers than current ETs and overcome key resistance mechanisms. In this study, we evaluated the preclinical pharmacology and efficacy of the next-generation oral SERD camizestrant (AZD9833) and assessed ER-co-targeting strategies by combining camizestrant with CDK4/6 inhibitors (CDK4/6i) and PI3K/AKT/mTOR-targeted therapy in models of progression on CDK4/6i and/or ET. Camizestrant demonstrated robust and selective ER degradation, modulated ER-regulated gene expression, and induced complete ER antagonism and significant antiproliferation activity in ESR1 wild-type (ESR1wt) and mutant (ESR1m) breast cancer cell lines and patient-derived xenograft (PDX) models. Camizestrant also delivered strong antitumor activity in fulvestrant-resistant ESR1wt and ESR1m PDX models. Evaluation of camizestrant in combination with CDK4/6i (palbociclib or abemaciclib) in CDK4/6-naive and -resistant models, as well as in combination with PI3Kαi (alpelisib), mTORi (everolimus), or AKTi (capivasertib), indicated that camizestrant was active with CDK4/6i or PI3K/AKT/mTORi and that antitumor activity was further increased by the triple combination. The response was observed independently of PI3K pathway mutation status. Overall, camizestrant shows strong and broad antitumor activity in ER+ breast cancer as a monotherapy and when combined with CDK4/6i and PI3K/AKT/mTORi. SIGNIFICANCE: Camizestrant, a next-generation oral SERD, shows promise in preclinical models of ER+ breast cancer alone and in combination with CDK4/6 and PI3K/AKT/mTOR inhibitors to address endocrine resistance, a current barrier to treatment.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Receptores de Estrogênio/metabolismo , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases/metabolismo , Antagonistas de Estrogênios , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinase 4 Dependente de Ciclina , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
5.
NPJ Breast Cancer ; 9(1): 64, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543694

RESUMO

Combining the selective AKT inhibitor, capivasertib, and SERD, fulvestrant improved PFS in a Phase III clinical trial (CAPItello-291), treating HR+ breast cancer patients following aromatase inhibitors, with or without CDK4/6 inhibitors. However, clinical data suggests CDK4/6 treatment may reduce response to subsequent monotherapy endocrine treatment. To support understanding of trials such as CAPItello-291 and gain insight into this emerging population of patients, we explored how CDK4/6 inhibitor treatment influences ER+ breast tumour cell function and response to fulvestrant and capivasertib after CDK4/6 inhibitor treatment. In RB+, RB- T47D and MCF7 palbociclib-resistant cells ER pathway ER and Greb-1 expression were reduced versus naïve cells. PI3K-AKT pathway activation was also modified in RB+ cells, with capivasertib less effective at reducing pS6 in RB+ cells compared to parental cells. Expression profiling of parental versus palbociclib-resistant cells confirmed capivasertib, fulvestrant and the combination differentially impacted gene expression modulation in resistant cells, with different responses seen in T47D and MCF7 cells. Fulvestrant inhibition of ER-dependent genes was reduced. In resistant cells, the combination was less effective at reducing cell cycle genes, but a consistent reduction in cell fraction in S-phase was observed in naïve and resistant cells. Despite modified signalling responses, both RB+ and RB- resistant cells responded to combination treatment despite some reduction in relative efficacy and was effective in vivo in palbociclib-resistant PDX models. Collectively these findings demonstrate that simultaneous inhibition of AKT and ER signalling can be effective in models representing palbociclib resistance despite changes in pathway dependency.

7.
STAR Protoc ; 4(2): 102144, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36905629

RESUMO

T cell hematological cancer has a complex interplay with host immune cells, but the ability to experimentally discriminate transferred cancer cells from host cells by flow cytometry is technically challenging. Here, we present a flow cytometry protocol to evaluate cancer cell and host immune phenotypes following transplant of a T cell lymphoma bearing a congenic marker (CD45.2) into a syngeneic host (CD45.1). We describe steps for isolation of primary immune cells from mice, staining preparation with flow cytometry antibody cocktails, and analysis by flow cytometry. For complete details on the use and execution of this protocol, please refer to Kuczynski et al.1.

8.
Nat Commun ; 13(1): 6360, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289203

RESUMO

Chromosomal instability is a major challenge to patient stratification and targeted drug development for high-grade serous ovarian carcinoma (HGSOC). Here we show that somatic copy number alterations (SCNAs) in frequently amplified HGSOC cancer genes significantly correlate with gene expression and methylation status. We identify five prevalent clonal driver SCNAs (chromosomal amplifications encompassing MYC, PIK3CA, CCNE1, KRAS and TERT) from multi-regional HGSOC data and reason that their strong selection should prioritise them as key biomarkers for targeted therapies. We use primary HGSOC spheroid models to test interactions between in vitro targeted therapy and SCNAs. MYC chromosomal copy number is associated with in-vitro and clinical response to paclitaxel and in-vitro response to mTORC1/2 inhibition. Activation of the mTOR survival pathway in the context of MYC-amplified HGSOC is statistically associated with increased prevalence of SCNAs in genes from the PI3K pathway. Co-occurrence of amplifications in MYC and genes from the PI3K pathway is independently observed in squamous lung cancer and triple negative breast cancer. In this work, we show that identifying co-occurrence of clonal driver SCNA genes could be used to tailor therapeutics for precision medicine.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Variações do Número de Cópias de DNA , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Paclitaxel/uso terapêutico , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
9.
Oncogene ; 41(44): 4905-4915, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36198774

RESUMO

Mutations in the estrogen receptor (ESR1) gene are common in ER-positive breast cancer patients who progress on endocrine therapies. Most mutations localise to just three residues at, or near, the C-terminal helix 12 of the hormone binding domain, at leucine-536, tyrosine-537 and aspartate-538. To investigate these mutations, we have used CRISPR-Cas9 mediated genome engineering to generate a comprehensive set of isogenic mutant breast cancer cell lines. Our results confirm that L536R, Y537C, Y537N, Y537S and D538G mutations confer estrogen-independent growth in breast cancer cells. Growth assays show mutation-specific reductions in sensitivities to drugs representing three classes of clinical anti-estrogens. These differential mutation- and drug-selectivity profiles have implications for treatment choices following clinical emergence of ER mutations. Our results further suggest that mutant expression levels may be determinants of the degree of resistance to some anti-estrogens. Differential gene expression analysis demonstrates up-regulation of estrogen-responsive genes, as expected, but also reveals that enrichment for interferon-regulated gene expression is a common feature of all mutations. Finally, a new gene signature developed from the gene expression profiles in ER mutant cells predicts clinical response in breast cancer patients with ER mutations.


Assuntos
Neoplasias da Mama , Receptores de Estrogênio , Humanos , Feminino , Receptores de Estrogênio/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Prognóstico , Antagonistas de Estrogênios/uso terapêutico , Mutação , Estrogênios/farmacologia
10.
EMBO Mol Med ; 14(6): e15816, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35510955

RESUMO

Peripheral T-cell lymphoma (PTCL) represents a rare group of heterogeneous diseases in urgent need of effective treatments. A scarcity of disease-relevant preclinical models hinders research advances. Here, we isolated a novel mouse (m)PTCL by serially transplanting a lymphoma from a germinal center B-cell hyperplasia model (Cγ1-Cre Blimp1fl/fl ) through immune-competent mice. Lymphoma cells were identified as clonal TCRß+ T-helper cells expressing T-follicular helper markers. We also observed coincident B-cell activation and development of a de novo B-cell lymphoma in the model, reminiscent of B-cell activation/lymphomagenesis found in human PTCL. Molecular profiling linked the mPTCL to the high-risk "GATA3" subtype of PTCL, showing GATA3 and Th2 gene expression, PI3K/mTOR pathway enrichment, hyperactivated MYC, and genome instability. Exome sequencing identified a human-relevant oncogenic ß-catenin mutation possibly involved in T-cell lymphomagenesis. Prolonged treatment responses were achieved in vivo by targeting ATR in the DNA damage response (DDR), a result corroborated in PTCL cell lines. This work provides mechanistic insight into the molecular and immunological drivers of T-cell lymphomagenesis and proposes DDR inhibition as an effective and readily translatable therapy in PTCL.


Assuntos
Dano ao DNA , Fator de Transcrição GATA3 , Linfoma de Células T Periférico , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Fator de Transcrição GATA3/genética , Linfoma de Células T Periférico/genética , Linfoma de Células T Periférico/imunologia , Linfoma de Células T Periférico/metabolismo , Linfoma de Células T Periférico/patologia , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo
11.
J Immunother Cancer ; 10(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35387780

RESUMO

BACKGROUND: The Regulatory T cell (Treg) lineage is defined by the transcription factor FOXP3, which controls immune-suppressive gene expression profiles. Tregs are often recruited in high frequencies to the tumor microenvironment where they can suppress antitumor immunity. We hypothesized that pharmacological inhibition of FOXP3 by systemically delivered, unformulated constrained ethyl-modified antisense oligonucleotides could modulate the activity of Tregs and augment antitumor immunity providing therapeutic benefit in cancer models and potentially in man. METHODS: We have identified murine Foxp3 antisense oligonucleotides (ASOs) and clinical candidate human FOXP3 ASO AZD8701. Pharmacology and biological effects of FOXP3 inhibitors on Treg function and antitumor immunity were tested in cultured Tregs and mouse syngeneic tumor models. Experiments were controlled by vehicle and non-targeting control ASO groups as well as by use of multiple independent FOXP3 ASOs. Statistical significance of biological effects was evaluated by one or two-way analysis of variance with multiple comparisons. RESULTS: AZD8701 demonstrated a dose-dependent knockdown of FOXP3 in primary Tregs, reduction of suppressive function and efficient target downregulation in humanized mice at clinically relevant doses. Surrogate murine FOXP3 ASO, which efficiently downregulated Foxp3 messenger RNA and protein levels in primary Tregs, reduced Treg suppressive function in immune suppression assays in vitro. FOXP3 ASO promoted more than 70% reduction in FOXP3 levels in Tregs in vitro and in vivo, strongly modulated Treg effector molecules (eg, ICOS, CTLA-4, CD25 and 4-1BB), and augmented CD8+ T cell activation and produced antitumor activity in syngeneic tumor models. The combination of FOXP3 ASOs with immune checkpoint blockade further enhanced antitumor efficacy. CONCLUSIONS: Antisense inhibitors of FOXP3 offer a promising novel cancer immunotherapy approach. AZD8701 is being developed clinically as a first-in-class FOXP3 inhibitor for the treatment of cancer currently in Ph1a/b clinical trial (NCT04504669).


Assuntos
Neoplasias , Oligonucleotídeos Antissenso , Animais , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Terapia de Imunossupressão , Imunoterapia , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Linfócitos T Reguladores , Microambiente Tumoral
12.
Leuk Lymphoma ; 62(11): 2625-2636, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34269152

RESUMO

In a phase 1b study of acalabrutinib (a covalent Bruton tyrosine kinase (BTK) inhibitor) in combination with vistusertib (a dual mTORC1/2 inhibitor) in patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL), multiple ascending doses of the combination as intermittent or continuous schedules of vistusertib were evaluated. The overall response rate was 12% (3/25). The pharmacodynamic (PD) profile for acalabrutinib showed that BTK occupancy in all patients was >95%. In contrast, PD analysis for vistusertib showed variable inhibition of phosphorylated 4EBP1 (p4EBP1) without modulation of AKT phosphorylation (pAKT). The pharmacokinetic (PK)/PD relationship of vistusertib was direct for TORC1 inhibition (p4EBP1) but did not correlate with TORC2 inhibition (pAKT). Cell-of-origin subtyping or next-generation sequencing did not identify a subset of DLBCL patients with clinical benefit; however, circulating tumor DNA dynamics correlated with radiographic response. These data suggest that vistusertib does not modulate targets sufficiently to add to the clinical activity of acalabrutinib monotherapy. Clinicaltrials.gov identifier: NCT03205046.


Assuntos
Recidiva Local de Neoplasia , Inibidores de Proteínas Quinases , Linfócitos B , Benzamidas , Humanos , Morfolinas , Inibidores de Proteínas Quinases/uso terapêutico , Pirazinas , Pirimidinas
13.
EBioMedicine ; 68: 103396, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34049239

RESUMO

BACKGROUND: Chemotherapy and targeted agent anti-cancer efficacy is largely dependent on the proliferative state of tumours, as exemplified by agents that target DNA synthesis/replication or mitosis. As a result, cell cycle specificities of a number of cancer drugs are well known. However, they are yet to be described in a quantifiable manner. METHODS: A scalable cell synchronisation protocol used to screen a library of 235 anti-cancer compounds exposed over six hours in G1 or S/G2 accumulated AsPC-1 cells to generate a cell cycle specificity (CCS) score. FINDINGS: The synchronisation method was associated with reduced method-related cytotoxicity compared to nocodazole, delivering sufficient cell cycle purity and cell numbers to run high-throughput drug library screens. Compounds were identified with G1 and S/G2-associated specificities that, overall, functionally matched with a compound's target/mechanism of action. This annotation was used to describe a synergistic schedule using the CDK4/6 inhibitor, palbociclib, prior to gemcitabine/AZD6738 as well as describe the correlation between the CCS score and published synergistic/antagonistic drug schedules. INTERPRETATION: This is the first highly quantitative description of cell cycle-dependent drug sensitivities that utilised a tractable and tolerated method with potential uses outside the present study. Drug treatments such as those shown to be G1 or S/G2 associated may benefit from scheduling considerations such as after CDK4/6 inhibitors and being first in drug sequences respectively. FUNDING: Cancer Research UK (CRUK) Institute core grants C14303/A17197 and C9545/A29580. The Li Ka Shing Centre where this work was performed was generously funded by CK Hutchison Holdings Limited, the University of Cambridge, CRUK, The Atlantic Philanthropies and others.


Assuntos
Desoxicitidina/análogos & derivados , Neoplasias/metabolismo , Nocodazol/farmacologia , Piperazinas/farmacologia , Piridinas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Moduladores de Tubulina/farmacologia , Técnicas de Cultura de Células , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Células MCF-7 , Neoplasias/tratamento farmacológico , Fatores de Tempo , Gencitabina
14.
Front Immunol ; 12: 633685, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953710

RESUMO

Immunotherapy has transformed cancer treatment by promoting durable clinical responses in a proportion of patients; however, treatment still fails in many patients. Innate immune cells play a key role in the response to immunotherapy. Crosstalk between innate and adaptive immune systems drives T-cell activation but also limits immunotherapy response, as myeloid cells are commonly associated with resistance. Hence, innate cells have both negative and positive effects within the tumor microenvironment (TME), and despite investment in early clinical trials targeting innate cells, they have seen limited success. Suppressive myeloid cells facilitate metastasis and immunotherapy resistance through TME remodeling and inhibition of adaptive immune cells. Natural killer (NK) cells, in contrast, secrete inflammatory cytokines and directly kill transformed cells, playing a key immunosurveillance role in early tumor development. Myeloid and NK cells show reciprocal crosstalk, influencing myeloid cell functional status or antigen presentation and NK effector function, respectively. Crosstalk between myeloid cells and the NK immune network in the TME is especially important in the context of therapeutic intervention. Here we discuss how myeloid and NK cell interactions shape anti-tumor responses by influencing an immunosuppressive TME and how this may influence outcomes of treatment strategies involving drugs that target myeloid and NK cells.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Células Matadoras Naturais/efeitos dos fármacos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Células Supressoras Mieloides/efeitos dos fármacos , Neoplasias/terapia , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos Imunológicos/efeitos adversos , Comunicação Celular/efeitos dos fármacos , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Evasão Tumoral/efeitos dos fármacos
15.
Nat Commun ; 12(1): 1998, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790302

RESUMO

The heterogeneity of breast cancer plays a major role in drug response and resistance and has been extensively characterized at the genomic level. Here, a single-cell breast cancer mass cytometry (BCMC) panel is optimized to identify cell phenotypes and their oncogenic signalling states in a biobank of patient-derived tumour xenograft (PDTX) models representing the diversity of human breast cancer. The BCMC panel identifies 13 cellular phenotypes (11 human and 2 murine), associated with both breast cancer subtypes and specific genomic features. Pre-treatment cellular phenotypic composition is a determinant of response to anticancer therapies. Single-cell profiling also reveals drug-induced cellular phenotypic dynamics, unravelling previously unnoticed intra-tumour response diversity. The comprehensive view of the landscapes of cellular phenotypic heterogeneity in PDTXs uncovered by the BCMC panel, which is mirrored in primary human tumours, has profound implications for understanding and predicting therapy response and resistance.


Assuntos
Benzamidas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Xenoenxertos/efeitos dos fármacos , Morfolinas/farmacologia , Piperazinas/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Xenoenxertos/metabolismo , Humanos , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Inibidores de Proteínas Quinases/farmacologia , Resultado do Tratamento
16.
Mol Cancer Ther ; 20(6): 1080-1091, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33785652

RESUMO

Suppressive myeloid cells mediate resistance to immune checkpoint blockade. PI3Kγ inhibition can target suppressive macrophages, and enhance efficacy of immune checkpoint inhibitors. However, how PI3Kγ inhibitors function in different tumor microenvironments (TME) to activate specific immune cells is underexplored. The effect of the novel PI3Kγ inhibitor AZD3458 was assessed in preclinical models. AZD3458 enhanced antitumor activity of immune checkpoint inhibitors in 4T1, CT26, and MC38 syngeneic models, increasing CD8+ T-cell activation status. Immune and TME biomarker analysis of MC38 tumors revealed that AZD3458 monotherapy or combination treatment did not repolarize the phenotype of tumor-associated macrophage cells but induced gene signatures associated with LPS and type II INF activation. The activation biomarkers were present across tumor macrophages that appear phenotypically heterogenous. AZD3458 alone or in combination with PD-1-blocking antibodies promoted an increase in antigen-presenting (MHCII+) and cytotoxic (iNOS+)-activated macrophages, as well as dendritic cell activation. AZD3458 reduced IL-10 secretion and signaling in primary human macrophages and murine tumor-associated macrophages, but did not strongly regulate IL-12 as observed in other studies. Therefore, rather than polarizing tumor macrophages, PI3Kγ inhibition with AZD3458 promotes a cytotoxic switch of macrophages into antigen-presenting activated macrophages, resulting in CD8 T-cell-mediated antitumor activity with immune checkpoint inhibitors associated with tumor and peripheral immune activation.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Animais , Modelos Animais de Doenças , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos
17.
Clin Cancer Res ; 26(23): 6335-6349, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32943458

RESUMO

PURPOSE: Danvatirsen is a therapeutic antisense oligonucleotide (ASO) that selectively targets STAT3 and has shown clinical activity in two phase I clinical studies. We interrogated the clinical mechanism of action using danvatirsen-treated patient samples and conducted back-translational studies to further elucidate its immunomodulatory mechanism of action. EXPERIMENTAL DESIGN: Paired biopsies and blood samples from danvatirsen-treated patients were evaluated using immunohistochemistry and gene-expression analysis. To gain mechanistic insight, we used mass cytometry, flow cytometry, and immunofluorescence analysis of CT26 tumors treated with a mouse surrogate STAT3 ASO, and human immune cells were treated in vitro with danvatirsen. RESULTS: Within the tumors of treated patients, danvatirsen uptake was observed mainly in cells of the tumor microenvironment (TME). Gene expression analysis comparing baseline and on-treatment tumor samples showed increased expression of proinflammatory genes. In mouse models, STAT3 ASO demonstrated partial tumor growth inhibition and enhanced the antitumor activity when combined with anti-PD-L1. Immune profiling revealed reduced STAT3 protein in immune and stromal cells, and decreased suppressive cytokines correlating with increased proinflammatory macrophages and cytokine production. These changes led to enhanced T-cell abundance and function in combination with anti-PD-L1. CONCLUSIONS: STAT3 ASO treatment reverses a suppressive TME and promotes proinflammatory gene expression changes in patients' tumors and mouse models. Preclinical data provide evidence that ASO-mediated inhibition of STAT3 in the immune compartment is sufficient to remodel the TME and enhance the activity of checkpoint blockade without direct STAT3 inhibition in tumor cells. Collectively, these data provide a rationale for testing this combination in the clinic.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Neoplasias do Colo/terapia , Neoplasias/terapia , Oligonucleotídeos/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Microambiente Tumoral/imunologia , Ensaios Clínicos Fase I como Assunto , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Quimioterapia Combinada , Humanos , Imunomodulação , Macrófagos/imunologia , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Prognóstico , Fator de Transcrição STAT3/genética , Linfócitos T/imunologia , Células Tumorais Cultivadas
18.
Nat Commun ; 11(1): 1407, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179751

RESUMO

Leukaemogenic mutations commonly disrupt cellular differentiation and/or enhance proliferation, thus perturbing the regulatory programs that control self-renewal and differentiation of stem and progenitor cells. Translocations involving the Mll1 (Kmt2a) gene generate powerful oncogenic fusion proteins, predominantly affecting infant and paediatric AML and ALL patients. The early stages of leukaemogenic transformation are typically inaccessible from human patients and conventional mouse models. Here, we take advantage of cells conditionally blocked at the multipotent haematopoietic progenitor stage to develop a MLL-r model capturing early cellular and molecular consequences of MLL-ENL expression based on a clear clonal relationship between parental and leukaemic cells. Through a combination of scRNA-seq, ATAC-seq and genome-scale CRISPR-Cas9 screening, we identify pathways and genes likely to drive the early phases of leukaemogenesis. Finally, we demonstrate the broad utility of using matched parental and transformed cells for small molecule inhibitor studies by validating both previously known and other potential therapeutic targets.


Assuntos
Transformação Celular Neoplásica , Histona-Lisina N-Metiltransferase/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Células-Tronco Hematopoéticas/metabolismo , Histona-Lisina N-Metiltransferase/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
J Immunother Cancer ; 7(1): 328, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31779705

RESUMO

BACKGROUND: The ability to modulate immune-inhibitory pathways using checkpoint blockade antibodies such as αPD-1, αPD-L1, and αCTLA-4 represents a significant breakthrough in cancer therapy in recent years. This has driven interest in identifying small-molecule-immunotherapy combinations to increase the proportion of responses. Murine syngeneic models, which have a functional immune system, represent an essential tool for pre-clinical evaluation of new immunotherapies. However, immune response varies widely between models and the translational relevance of each model is not fully understood, making selection of an appropriate pre-clinical model for drug target validation challenging. METHODS: Using flow cytometry, O-link protein analysis, RT-PCR, and RNAseq we have characterized kinetic changes in immune-cell populations over the course of tumor development in commonly used syngeneic models. RESULTS: This longitudinal profiling of syngeneic models enables pharmacodynamic time point selection within each model, dependent on the immune population of interest. Additionally, we have characterized the changes in immune populations in each of these models after treatment with the combination of α-PD-L1 and α-CTLA-4 antibodies, enabling benchmarking to known immune modulating treatments within each model. CONCLUSIONS: Taken together, this dataset will provide a framework for characterization and enable the selection of the optimal models for immunotherapy combinations and generate potential biomarkers for clinical evaluation in identifying responders and non-responders to immunotherapy combinations.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Imunomodulação/efeitos dos fármacos , Animais , Biomarcadores Tumorais , Modelos Animais de Doenças , Sinergismo Farmacológico , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Microambiente Tumoral
20.
Mol Cancer Ther ; 18(5): 909-919, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30872381

RESUMO

Barasertib (AZD1152), a pro-drug of the highly potent and selective Aurora B kinase inhibitor AZD2811, showed promising clinical activity in relapsed/refractory diffuse large B-cell lymphoma (DLBCL) patients administered as a 4-day infusion. To improve potential therapeutic benefit of Aurora B kinase inhibition, a nanoparticle formulation of AZD2811 has been developed to address limitations of repeated intravenous infusion. One of the challenges with the use of nanoparticles for chronic treatment of tumors is optimizing dose and schedule required to enable repeat administration to sustain tumor growth inhibition. AZD2811 gives potent cell growth inhibition across a range of DLBCL cells lines in vitro In vivo, repeat administration of the AZD2811 nanoparticle gave antitumor activity at half the dose intensity of AZD1152. Compared with AZD1152, a single dose of AZD2811 nanoparticle gave less reduction in pHH3, but increased apoptosis and reduction of cells in G1 and G2-M, albeit at later time points, suggesting that duration and depth of target inhibition influence the nature of the tumor cell response to drug. Further exploration of the influence of dose and schedule on efficacy revealed that AZD2811 nanoparticle can be used flexibly with repeat administration of 25 mg/kg administered up to 7 days apart being sufficient to maintain equivalent tumor control. Timing of repeat administration could be varied with 50 mg/kg every 2 weeks controlling tumor control as effectively as 25 mg/kg every week. AZD2811 nanoparticle can be administered with very different doses and schedules to inhibit DLBCL tumor growth, although maximal tumor growth inhibition was achieved with the highest dose intensities.


Assuntos
Acetanilidas/farmacologia , Aurora Quinase B/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Acetanilidas/química , Animais , Aurora Quinase B/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Nanopartículas/química , Inibidores de Proteínas Quinases/química , Quinazolinas/química , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA