Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Plant Sci ; 13: 980587, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479518

RESUMO

Partial resistance in plants generally exerts a low selective pressure on pathogens, and thus ensuring their durability in agrosystems. However, little is known about the effect of partial resistance on the molecular mechanisms of pathogenicity, a knowledge that could advance plant breeding for sustainable plant health. Here we investigate the gene expression of Phytophthora capsici during infection of pepper (Capsicum annuum L.), where only partial genetic resistance is reported, using Illumina RNA-seq. Comparison of transcriptomes of P. capsici infecting susceptible and partially resistant peppers identified a small number of genes that redirected its own resources into lipid biosynthesis to subsist on partially resistant plants. The adapted and non-adapted isolates of P. capsici differed in expression of genes involved in nucleic acid synthesis and transporters. Transient ectopic expression of the RxLR effector genes CUST_2407 and CUST_16519 in pepper lines differing in resistance levels revealed specific host-isolate interactions that either triggered local necrotic lesions (hypersensitive response or HR) or elicited leave abscission (extreme resistance or ER), preventing the spread of the pathogen to healthy tissue. Although these effectors did not unequivocally explain the quantitative host resistance, our findings highlight the importance of plant genes limiting nutrient resources to select pepper cultivars with sustainable resistance to P. capsici.

2.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34400501

RESUMO

Genebanks collect and preserve vast collections of plants and detailed passport information, with the aim of preserving genetic diversity for conservation and breeding. Genetic characterization of such collections has the potential to elucidate the genetic histories of important crops, use marker-trait associations to identify loci controlling traits of interest, search for loci undergoing selection, and contribute to genebank management by identifying taxonomic misassignments and duplicates. We conducted a genomic scan with genotyping by sequencing (GBS) derived single nucleotide polymorphisms (SNPs) of 10,038 pepper (Capsicum spp.) accessions from worldwide genebanks and investigated the recent history of this iconic staple. Genomic data detected up to 1,618 duplicate accessions within and between genebanks and showed that taxonomic ambiguity and misclassification often involve interspecific hybrids that are difficult to classify morphologically. We deeply interrogated the genetic diversity of the commonly consumed Capsicum annuum to investigate its history, finding that the kinds of peppers collected in broad regions across the globe overlap considerably. The method ReMIXTURE-using genetic data to quantify the similarity between the complement of peppers from a focal region and those from other regions-was developed to supplement traditional population genetic analyses. The results reflect a vision of pepper as a highly desirable and tradable cultural commodity, spreading rapidly throughout the globe along major maritime and terrestrial trade routes. Marker associations and possible selective sweeps affecting traits such as pungency were observed, and these traits were shown to be distributed nonuniformly across the globe, suggesting that human preferences exerted a primary influence over domesticated pepper genetic structure.


Assuntos
Capsicum/genética , Cromossomos de Plantas/genética , Genética Populacional , Genoma de Planta , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Capsicum/crescimento & desenvolvimento , Genômica
3.
Front Plant Sci ; 7: 632, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242835

RESUMO

With the banning of most chemical nematicides, the control of root-knot nematodes (RKNs) in vegetable crops is now based essentially on the deployment of single, major resistance genes (R-genes). However, these genes are rare and their efficacy is threatened by the capacity of RKNs to adapt. In pepper, several dominant R-genes are effective against RKNs, and their efficacy and durability have been shown to be greater in a partially resistant genetic background. However, the genetic determinants of this partial resistance were unknown. Here, a quantitative trait loci (QTL) analysis was performed on the F2:3 population from the cross between Yolo Wonder, an accession considered partially resistant or resistant, depending on the RKN species, and Doux Long des Landes, a susceptible cultivar. A genetic linkage map was constructed from 130 F2 individuals, and the 130 F3 families were tested for resistance to the three main RKN species, Meloidogyne incognita, M. arenaria, and M. javanica. For the first time in the pepper-RKN pathosystem, four major QTLs were identified and mapped to two clusters. The cluster on chromosome P1 includes three tightly linked QTLs with specific effects against individual RKN species. The fourth QTL, providing specific resistance to M. javanica, mapped to pepper chromosome P9, which is known to carry multiple NBS-LRR repeats, together with major R-genes for resistance to nematodes and other pathogens. The newly discovered cluster on chromosome P1 has a broad spectrum of action with major additive effects on resistance. These data highlight the role of host QTLs involved in plant-RKN interactions and provide innovative potential for the breeding of new pepper cultivars or rootstocks combining quantitative resistance and major R-genes, to increase both the efficacy and durability of RKN control by resistance genes.

4.
Mol Plant Microbe Interact ; 24(7): 787-97, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21405985

RESUMO

The Nc(tbr) and Ny(tbr) genes in Solanum tuberosum determine hypersensitive reactions, characterized by necrotic reactions and restriction of the virus systemic movement, toward isolates belonging to clade C and clade O of Potato virus Y (PVY), respectively. We describe a new resistance from S. sparsipilum which possesses the same phenotype and specificity as Nc(tbr) and is controlled by a dominant gene designated Nc(spl). Nc(spl) maps on potato chromosome IV close or allelic to Ny(tbr). The helper component proteinase (HC-Pro) cistron of PVY was shown to control necrotic reactions and resistance elicitation in plants carrying Nc(spl), Nc(tbr), and Ny(tbr). However, inductions of necrosis and of resistance to the systemic virus movement in plants carrying Nc(spl) reside in different regions of the HC-Pro cistron. Also, genomic determinants outside the HC-Pro cistron are involved in the systemic movement of PVY after induction of necroses on inoculated leaves of plants carrying Ny(tbr). These results suggest that the Ny(tbr) resistance may have been involved in the recent emergence of PVY isolates with a recombination breakpoint near the junction of HC-Pro and P3 cistrons in potato crops. Therefore, this emergence could constitute one of the rare examples of resistance breakdown by a virus which was caused by recombination instead of by successive accumulation of nucleotide substitutions.


Assuntos
Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Genes de Plantas , Peptídeo Hidrolases/genética , Doenças das Plantas , Potyvirus/genética , Potyvirus/metabolismo , Solanum/genética , Solanum/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Quimera/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Ensaio de Imunoadsorção Enzimática , Genes , Genes Dominantes , Peptídeo Hidrolases/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Recombinação Genética , Alinhamento de Sequência , Solanum/metabolismo
5.
Theor Appl Genet ; 119(4): 705-19, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19533081

RESUMO

To find out new resistance sources to late blight in the wild germplasm for potato breeding, we examined the polygenic resistance of Solanum sparsipilum and S. spegazzinii by a quantitative trait locus (QTL) analysis. We performed stem and foliage tests under controlled conditions in two diploid mapping progenies. Four traits were selected for QTL detection. A total of 30 QTLs were mapped, with a large-effect QTL region on chromosome X detected in both potato relatives. The mapping of literature-derived markers highlighted colinearities with published late blight QTLs or R-genes. Results showed (a) the resistance potential of S. sparsipilum and S. spegazzinii for late blight control, and (b) the efficacy of the stem test as a complement to the foliage test to break down the complex late blight resistance into elementary components. The relationships of late blight resistance QTLs with R-genes and maturity QTLs are discussed.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Doenças das Plantas/imunologia , Folhas de Planta/genética , Caules de Planta/genética , Locos de Características Quantitativas/genética , Solanum tuberosum/genética , Epistasia Genética , Marcadores Genéticos , Imunidade Inata/genética , Doenças das Plantas/genética , Análise de Componente Principal
6.
Genome ; 50(4): 422-7, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17546100

RESUMO

Using a complementary (c)DNA-amplified fragment length polymorphism (AFLP) approach, we investigated differential gene expression linked to resistance mechanisms during the incompatible potato - Globodera pallida interaction. Expression was compared between a resistant and a susceptible potato clone, inoculated or not inoculated with G. pallida. These clones were issued from a cross between the resistant Solanum sparsipilum spl329.18 accession and the susceptible dihaploid S. tuberosum Caspar H3, and carried, respectively, resistant and susceptible alleles at the resistance quantitative trait loci (QTLs). Analysis was done on root fragments picked up at 4 time points, during a period of 6 days after infection, from penetration of the nematode in the root to degradation of the feeding site in resistant plants. A total of 2560 transcript-derived fragments (TDFs) were analyzed, resulting in the detection of 46 TDFs that were up- or downregulated. The number of TDFs that were up- or downregulated increased with time after inoculation. The majority of TDFs were upregulated at only 1 or 2 time points in response to infection. After isolation and sequencing of the TDFs of interest, a subset of 36 sequences were identified, among which 22 matched plant sequences and 2 matched nematode sequences. Some of the TDFs that matched plant genes showed clear homologies to genes involved in cell-cycle regulation, transcription regulation, resistance downstream signalling pathways, and defense mechanisms. Other sequences with homologies to plant genes of unknown function or without any significant similarity to known proteins were also found. Although not exhaustive, these results represent the most extensive list of genes with altered RNA levels after the incompatible G. pallida-potato interaction that has been published to date. The function of these genes could provide insight into resistance or plant defense mechanisms during incompatible potato-cyst nematode interactions.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Imunidade Inata/genética , Solanum/genética , Solanum/parasitologia , Tylenchoidea/fisiologia , Animais , Interações Hospedeiro-Parasita/genética
7.
Theor Appl Genet ; 115(2): 253-64, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17497121

RESUMO

The pepper accession Criollo de Morelos 334 is the most efficient source of resistance currently known to Phytophthora capsici and P. parasitica. To investigate whether genetic controls of resistance to two Phytophthora species are independent, we compared the genetic architecture of resistance of CM334 to both Phytophthora species. The RIL population F5YC used to construct the high-resolution genetic linkage map of pepper was assessed for resistance to one isolate of each Phytophthora species. Inheritance of the P. capsici and P. parasitica resistance was polygenic. Twelve additive QTLs involved in the P. capsici resistance and 14 additive QTLs involved in the P. parasitica resistance were detected. The QTLs identified in this progeny were specific to these Phytophthora species. Comparative mapping analysis with literature data identified three colocations between resistance QTLs to P. parasitica and P. capsici in pepper. Whereas this result suggests presence of common resistance factors to the two Phytophthora species in pepper, which possibly derive from common ancestral genes, calculation of the colocation probability indicates that these colocations could occur by chance.


Assuntos
Capsicum/genética , Phytophthora/fisiologia , Capsicum/parasitologia , Mapeamento Cromossômico , Marcadores Genéticos , Imunidade Inata/genética , Fenótipo , Doenças das Plantas/genética , Locos de Características Quantitativas , Especificidade da Espécie
8.
Genetics ; 173(2): 1075-87, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16582432

RESUMO

An ultradense genetic linkage map with >10,000 AFLP loci was constructed from a heterozygous diploid potato population. To our knowledge, this is the densest meiotic recombination map ever constructed. A fast marker-ordering algorithm was used, based on the minimization of the total number of recombination events within a given marker order in combination with genotyping error-detection software. This resulted in "skeleton bin maps," which can be viewed as the most parsimonious marker order. The unit of distance is not expressed in centimorgans but in "bins." A bin is a position on the genetic map with a unique segregation pattern that is separated from adjacent bins by a single recombination event. Putative centromeres were identified by a strong clustering of markers, probably due to cold spots for recombination. Conversely, recombination hot spots resulted in large intervals of up to 15 cM without markers. The current level of marker saturation suggests that marker density is proportional to physical distance and independent of recombination frequency. Most chromatids (92%) recombined once or never, suggesting strong chiasma interference. Absolute chiasma interference within a chromosome arm could not be demonstrated. Two examples of contig construction and map-based cloning have demonstrated that the marker spacing was in accordance with the expected physical distance: approximately one marker per BAC length. Currently, the markers are used for genetic anchoring of a physical map of potato to deliver a sequence-ready minimal tiling path of BAC contigs of specific chromosomal regions for the potato genome sequencing consortium (http://www.potatogenome.net).


Assuntos
Genoma de Planta , Solanum tuberosum/genética , Mapeamento Cromossômico , Diploide , Marcadores Genéticos , Heterozigoto , Meiose/genética , Locos de Características Quantitativas , Recombinação Genética , Mapeamento por Restrição
9.
Theor Appl Genet ; 112(4): 699-707, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16365760

RESUMO

Meloidogyne fallax is an emerging pest in Europe and represents a threat for potato production. We report the mapping of genetic factors controlling a quantitative resistance against M. fallax identified in the Solanum sparsipilum genotype 88S.329.15. When infected, this genotype develops a necrotic reaction at the feeding site of the juveniles and totally prevents their development to the female stage. A "F1" diploid progeny consisting of 128 individuals was obtained using the potato (S. tuberosum) dihaploid genotype BF15 H1 as female progenitor. Sixty-eight hybrid genotypes displayed necrosis at the feeding site of the juveniles and 60 other genotypes showed no defence reaction. This suggested a monogenic control of the resistance. However, when considering the number of nematode females developed in their roots, a continuous distribution was observed for both "necrotic" and "non-necrotic" hybrid genotypes, indicating a polygenic control of the resistance. A linkage map of each parental genotype was constructed using AFLP markers. The necrotic reaction (NR) was mapped as a qualitative trait on chromosome XII of the resistant genotype 88S.329.15. Quantitative trait locus (QTL) analysis for the number of nematode females developed per "F1" plant genotype was performed using the QTL cartographer software. No QTL was detected on the linkage map of the susceptible parent. A QTL explaining 94.5% of the phenotypic variation was mapped on chromosome XII of the resistant progenitor. This QTL, named MfaXIIspl, was mapped in a genomic region collinear to the map position of the Mi-3 gene conferring resistance to Meloidogyne incognita in tomato. It corresponds to the NR locus.


Assuntos
Cromossomos de Plantas/genética , Genes de Plantas/genética , Imunidade Inata/genética , Locos de Características Quantitativas , Solanum/genética , Tylenchoidea/patogenicidade , Animais , Morte Celular/genética , Mapeamento Cromossômico , Necrose , Doenças das Plantas/parasitologia , Recombinação Genética , Solanum/parasitologia , Tylenchoidea/crescimento & desenvolvimento
10.
Mol Plant Microbe Interact ; 18(11): 1186-94, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16353553

RESUMO

Plant resistance to nematodes is related to the ability of the host to reduce the development of nematode juveniles into females. Resistance to the potato cyst nematode (PCN) Globodera pallida, originating from the wild species Solanum sparsipilum, was dissected by a quantitative trait loci (QTL) approach. Two QTL explained 89% of the phenotypic variation. The QTL GpaV(s)spl on chromosome V displayed the major effect on the cyst number (coefficient of determination [R2] = 76.6%). It restricted G. pallida development to 16.2% of juveniles, 81.5% of males, and 2.3% of females. The QTL GpaXI(s)spl on chromosome XI displayed a lower effect on the cyst number (R2 = 12.7%). It restricted G. pallida development to 13.8% of juveniles, 35.4% of males, and 50.8% of females. Clones carrying both QTL restricted the nematode development to 58.1% juveniles, 41.1% of males, and 0.8% of females. We demonstrated that potato clones carrying both QTL showed a strong necrotic reaction in roots infected by nematodes, while no such reaction was observed in clones carrying a single QTL. This result underlines the importance to introgress together GpaV(s)spl and GpaXI(s)spl into potato cultivars, in order to reduce the density of this quarantine pest in soil and to decrease the risk of selecting overcoming G. pallida subpopulations.


Assuntos
Nematoides/patogenicidade , Locos de Características Quantitativas , Solanum/genética , Animais , Morte Celular/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Feminino , Masculino , Nematoides/crescimento & desenvolvimento , Razão de Masculinidade , Solanum/parasitologia
11.
Genetics ; 165(4): 2107-16, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14704190

RESUMO

Segregation data were obtained for 1260 potato linkage group I-specific AFLP loci from a heterozygous diploid potato population. Analytical tools that identified potential typing errors and/or inconsistencies in the data and that assembled cosegregating markers into bins were applied. Bins contain multiple-marker data sets with an identical segregation pattern, which is defined as the bin signature. The bin signatures were used to construct a skeleton bin map that was based solely on observed recombination events. Markers that did not match any of the bin signatures exactly (and that were excluded from the calculation of the skeleton bin map) were placed on the map by maximum likelihood. The resulting maternal and paternal maps consisted of 95 and 101 bins, respectively. Markers derived from EcoRI/MseI, PstI/MseI, and SacI/MseI primer combinations showed different genetic distributions. Approximately three-fourths of the markers placed into a bin were considered to fit well on the basis of an estimated residual "error rate" of 0-3%. However, twice as many PstI-based markers fit badly, suggesting that parental PstI-site methylation patterns had changed in the population. Recombination frequencies were highly variable across the map. Inert, presumably centromeric, regions caused extensive marker clustering while recombination hotspots (or regions identical by descent) resulted in empty bins, despite the level of marker saturation.


Assuntos
Ligação Genética , Marcadores Genéticos , Genoma de Planta , Meiose , Solanum tuberosum/genética , Mapeamento Cromossômico , Segregação de Cromossomos , Metilação de DNA , Heterozigoto , Técnica de Amplificação ao Acaso de DNA Polimórfico , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA