Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559037

RESUMO

The thymus, a central primary lymphoid organ of the immune system, plays a key role in T cell development. Surprisingly, the thymus is quite neglected with regards to standardized pathology approaches and practices for assessing structure and function. Most studies use multispectral flow cytometry to define the dynamic composition of the thymus at the cell population level, but they are limited by lack of contextual insight. This knowledge gap hinders our understanding of various thymic conditions and pathologies, particularly how they affect thymic architecture, and subsequently, immune competence. Here, we introduce a digital pathology pipeline to address these challenges. Our approach can be coupled to analytical algorithms and utilizes rationalized morphometric assessments of thymic tissue, ranging from tissue-wide down to microanatomical and ultrastructural levels. This pipeline enables the quantitative assessment of putative changes and adaptations of thymic structure to stimuli, offering valuable insights into the pathophysiology of thymic disorders. This versatile pipeline can be applied to a wide range of conditions that may directly or indirectly affect thymic structure, ranging from various cytotoxic stimuli inducing acute thymic involution to autoimmune diseases, such as myasthenia gravis. Here, we demonstrate applicability of the method in a mouse model of age-dependent thymic involution, both by confirming established knowledge, and by providing novel insights on intrathymic remodeling in the aged thymus. Our orthogonal pipeline, with its high versatility and depth of analysis, promises to be a valuable and practical toolset for both basic and translational immunology laboratories investigating thymic function and disease.

2.
Nat Commun ; 11(1): 3702, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32710081

RESUMO

Spinal cord injury (SCI) causes immune dysfunction, increasing the risk of infectious morbidity and mortality. Since bone marrow hematopoiesis is essential for proper immune function, we hypothesize that SCI disrupts bone marrow hematopoiesis. Indeed, SCI causes excessive proliferation of bone marrow hematopoietic stem and progenitor cells (HSPC), but these cells cannot leave the bone marrow, even after challenging the host with a potent inflammatory stimulus. Sequestration of HSPCs in bone marrow after SCI is linked to aberrant chemotactic signaling that can be reversed by post-injury injections of Plerixafor (AMD3100), a small molecule inhibitor of CXCR4. Even though Plerixafor liberates HSPCs and mature immune cells from bone marrow, competitive repopulation assays show that the intrinsic long-term functional capacity of HSPCs is still impaired in SCI mice. Together, our data suggest that SCI causes an acquired bone marrow failure syndrome that may contribute to chronic immune dysfunction.


Assuntos
Transtornos da Insuficiência da Medula Óssea/etiologia , Medula Óssea/metabolismo , Traumatismos da Medula Espinal/complicações , Animais , Benzilaminas , Medula Óssea/patologia , Células da Medula Óssea , Transtornos da Insuficiência da Medula Óssea/patologia , Proliferação de Células , Quimiocina CXCL12 , Ciclamos , Modelos Animais de Doenças , Feminino , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Compostos Heterocíclicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Receptores CXCR4/antagonistas & inibidores , Transdução de Sinais , Traumatismos da Medula Espinal/imunologia
3.
Sci Rep ; 9(1): 19105, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836828

RESUMO

Humanized mice can be used to better understand how the human immune system responds to central nervous system (CNS) injury and inflammation. The optimal parameters for using humanized mice in preclinical CNS injury models need to be established for appropriate use and interpretation. Here, we show that the developmental age of the human immune system significantly affects anatomical and functional outcome measures in a preclinical model of traumatic spinal cord injury (SCI). Specifically, it takes approximately 3-4 months for a stable and functionally competent human immune system to develop in neonatal immune compromised mice after they are engrafted with human umbilical cord blood stem cells. Humanized mice receiving a SCI before or after stable engraftment exhibit significantly different neuroinflammatory profiles. Importantly, the development of a mature human immune system was associated with worse lesion pathology and neurological recovery after SCI. In these mice, human T cells infiltrate the spinal cord lesion and directly contact human macrophages. Together, data in this report establish an optimal experimental framework for using humanized mice to help translate promising preclinical therapies for CNS injury.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/terapia , Animais , Modelos Animais de Doenças , Feminino , Sangue Fetal/citologia , Humanos , Sistema Imunitário , Inflamação , Lipopolissacarídeos , Linfócitos/citologia , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Medula Espinal/patologia , Baço/citologia , Linfócitos T Citotóxicos/citologia
4.
Neurosci Lett ; 661: 126-131, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-28982595

RESUMO

BACKGROUND AND PURPOSE: Ischemic stroke produces significant morbidity and mortality, and acute interventions are limited by short therapeutic windows. Novel approaches to neuroprotection and neurorepair are necessary. HuR is an RNA-binding protein (RBP) which modulates RNA stability and translational efficiency of genes linked to ischemic stroke injury. METHODS: Using a transgenic (Tg) mouse model, we examined the impact of ectopic HuR expression in astrocytes on acute injury evolution after transient middle cerebral artery occlusion (tMCAO). RESULTS: HuR transgene expression was detected in astrocytes in perilesional regions and contralaterally. HuR Tg mice did not improve neurologically 72h after injury, whereas littermate controls did. In Tg mice, increased cerebral vascular permeability and edema were observed. Infarct volume was not affected by the presence of the transgene. CONCLUSIONS: Ectopic expression of HuR in astrocytes worsens outcome after transient ischemic stroke in mice in part by increasing vasogenic cerebral edema. These findings suggest that HuR could be a therapeutic target in cerebral ischemia/reperfusion.


Assuntos
Edema Encefálico/metabolismo , Isquemia Encefálica/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Recuperação de Função Fisiológica/fisiologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Edema Encefálico/genética , Isquemia Encefálica/genética , Modelos Animais de Doenças , Proteína Semelhante a ELAV 1/genética , Infarto da Artéria Cerebral Média/genética , Camundongos Transgênicos , Recuperação de Função Fisiológica/genética , Traumatismo por Reperfusão/metabolismo , Acidente Vascular Cerebral/fisiopatologia
5.
Brain Res ; 1639: 200-13, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26995494

RESUMO

Estrogens have previously been shown to protect the brain against acute ischemic insults, by potentially augmenting cerebrovascular function after ischemic stroke. The current study hypothesized that treatment with sustained release of high-dose 17ß-estradiol (E2) at the time of reperfusion from middle cerebral artery occlusion (MCAO) in rats would attenuate reperfusion injury, augment post-stroke angiogenesis and cerebral blood flow, and attenuate lesion volume. Female Wistar rats underwent ovariectomy, followed two weeks later by transient, two-hour right MCAO (tMCAO) and treatment with E2 (n=13) or placebo (P; n=12) pellets starting at reperfusion. E2 treatment resulted in significantly smaller total lesion volume, smaller lesions within striatal and cortical brain regions, and less atrophy of the ipsilateral hemisphere after six weeks of recovery. E2-treated animals exhibited accelerated recovery of contralateral forelimb sensorimotor function in the cylinder test. Magnetic resonance imaging (MRI) showed that E2 treatment reduced the formation of lesion cysts, decreased lesion volume, and increased lesional cerebral blood flow (CBF). K(trans), a measure of vascular permeability, was increased in the lesions. This finding, which represents lesion neovascularization, was not altered by E2 treatment. Ischemic stroke-related angiogenesis and vessel formation was confirmed with immunolabeling of brain tissue and was not altered with E2 treatment. In summary, E2 treatment administered immediately following reperfusion significantly reduced lesion size, cyst formation, and brain atrophy while improving lesional CBF and accelerating recovery of functional deficits in a rat model of ischemic stroke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Estradiol/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Traumatismo por Reperfusão/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiopatologia , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Implantes de Medicamento , Estradiol/sangue , Feminino , Membro Anterior/fisiopatologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Fármacos Neuroprotetores/sangue , Ovariectomia , Distribuição Aleatória , Ratos Wistar , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Traumatismo por Reperfusão/diagnóstico por imagem , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia
6.
Exp Neurol ; 271: 432-44, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26193167

RESUMO

Mouse models have provided key insight into the cellular and molecular control of human immune system function. However, recent data indicate that extrapolating the functional capabilities of the murine immune system into humans can be misleading. Since immune cells significantly affect neuron survival and axon growth and also are required to defend the body against infection, it is important to determine the pathophysiological significance of spinal cord injury (SCI)-induced changes in human immune system function. Research projects using monkeys or humans would be ideal; however, logistical and ethical barriers preclude detailed mechanistic studies in either species. Humanized mice, i.e., immunocompromised mice reconstituted with human immune cells, can help overcome these barriers and can be applied in various experimental conditions that are of interest to the SCI community. Specifically, newborn NOD-SCID-IL2rg(null) (NSG) mice engrafted with human CD34(+) hematopoietic stem cells develop normally without neurological impairment. In this report, new data show that when mice with human immune systems receive a clinically-relevant spinal contusion injury, spontaneous functional recovery is indistinguishable from that achieved after SCI using conventional inbred mouse strains. Moreover, using routine immunohistochemical and flow cytometry techniques, one can easily phenotype circulating human immune cells and document the composition and distribution of these cells in the injured spinal cord. Lesion pathology in humanized mice is typical of mouse contusion injuries, producing a centralized lesion epicenter that becomes occupied by phagocytic macrophages and lymphocytes and enclosed by a dense astrocytic scar. Specific human immune cell types, including three distinct subsets of human monocytes, were readily detected in the blood, spleen and liver. Future studies that aim to understand the functional consequences of manipulating the neuro-immune axis after SCI should consider using the humanized mouse model. Humanized mice represent a powerful tool for improving the translational value of pre-clinical SCI data.


Assuntos
Antígenos CD/metabolismo , Interleucina-2/genética , Recuperação de Função Fisiológica/imunologia , Traumatismos da Medula Espinal , Transplante de Células-Tronco/métodos , Animais , Proteínas de Ligação ao Cálcio , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Membro Posterior/fisiopatologia , Humanos , Laminina/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Proteínas dos Microfilamentos , Monócitos/classificação , Monócitos/patologia , Atividade Motora/genética , Proteínas do Tecido Nervoso/metabolismo , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/cirurgia
7.
Brain Res ; 1461: 76-86, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22572084

RESUMO

We previously observed that 17ß-estradiol (E2) augments ischemic borderzone vascular density 10 days after focal cerebral ischemia-reperfusion in rats. We now evaluated the effect of E2 on vascular remodeling, lesional characteristics, and motor recovery up to 30 days after injury. Peri-lesional vascular density in tissue sections from rats treated with 0.72 mg E2 pellets was higher compared to 0.18 mg E2 pellets or placebo (P) pellets: vascular density index, 1.9 ± 0.2 (0.72 mg E2) vs. 1.4 ± 0.2 (0.18 mg E2) vs. 1.5 ± 0.4 (P), p=0.01. This was consistent with perfusion magnetic resonance imaging (MRI) measurements of lesional relative cerebral blood flow (rCBF): 1.89 ± 0.32 (0.72 mg E2) vs. 1.32 ± 0.19 (P), p=0.04. Post-ischemic angiogenesis occurred in P-treated as well as E2-treated rats. There was no treatment-related effect on lesional size, but lesional tissue was better preserved in E2-treated rats: cystic component as a % of total lesion, 30 ± 12 (0.72 mg E2) vs. 29 ± 17 (0.18 mg E2) vs. 61 ± 29 (P), p=0.008. Three weeks after right middle cerebral artery territory injury, rats treated with 0.72 mg E2 pellets used the left forelimb more than P-treated or 0.18 mg E2-treated rats: limb use asymmetry score, 0.09 ± 0.43 (0.72 mg E2) vs. 0.54 ± 0.12 (0.18 mg E2) vs. 0.54 ± 0.40 (P), p=0.05. We conclude that treatment with 0.72 mg E2 pellets beginning one week prior to ischemia/reperfusion and continuing through the one-month recovery period results in augmentation of lesional vascularity and perfusion, as well as improved motor recovery.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Circulação Cerebrovascular/efeitos dos fármacos , Modelos Animais de Doenças , Estradiol/uso terapêutico , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Isquemia Encefálica/fisiopatologia , Circulação Cerebrovascular/fisiologia , Estradiol/farmacologia , Feminino , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA