Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679683

RESUMO

The economic and environmental sustainability of extensive livestock production systems requires the optimisation of soil management, pasture production and animal grazing. Soil compaction is generally viewed as an indicator of soil degradation processes and a determinant factor in crop productivity. In the Montado silvopastoral ecosystem, characteristic of the Iberian Peninsula, animal trampling is mentioned as a variable to consider in soil compaction. This study aims: (i) to assess the spatial variation in the compaction profile of the 0-0.30 m deep soil layer over several years; (ii) to evaluate the effect of animal trampling on soil compaction; and (iii) to demonstrate the utility of combining various technological tools for sensing and mapping indicators of soil characteristics (Cone Index, CI; and apparent electrical conductivity, ECa), of pastures' vegetative vigour (Normalised Difference Vegetation Index, NDVI) and of cows' grazing zones (Global Positioning Systems, GPS collars). The significant correlation between CI, soil moisture content (SMC) and ECa and between ECa and soil clay content shows the potential of using these expedient tools provided by the development of Precision Agriculture. The compaction resulting from animal trampling was significant outside the tree canopy (OTC) in the four evaluated dates and in the three soil layers considered (0-0.10 m; 0.10-0.20 m; 0.20-0.30 m). However, under the tree canopy (UTC), the effect of animal trampling was significant only in the 0-0.10 m soil layer and in three of the four dates, with a tendency for a greater CI at greater depths (0.10-0.30 m), in zones with a lower animal presence. These results suggest that this could be a dynamic process, with recovery cycles in the face of grazing management, seasonal fluctuations in soil moisture or spatial variation in specific soil characteristics (namely clay contents). The NDVI shows potential for monitoring the effect of livestock trampling during the peak spring production phase, with greater vigour in areas with less animal trampling. These results provide good perspectives for future studies that allow the calibration and validation of these tools to support the decision-making process of the agricultural manager.


Assuntos
Ecossistema , Solo , Feminino , Animais , Bovinos , Argila , Agricultura , Gado , Árvores
2.
Animals (Basel) ; 12(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36230248

RESUMO

The Montado is a complex agroforestry-pastoral ecosystem due to the interactions between soil-pasture-trees-animals and climate. The typical Montado soil has an acidic pH and manganese toxicity, which affect the pasture's productivity and pasture floristic composition (PFC). The PFC, on the other hand, can also be influenced by the type and intensity of grazing, which can lead to significant decreases in the amount of biomass produced and the biodiversity of species in the pasture. The objective of this study was to evaluate the effect of grazing type, by sheep, and different stocking rates on the PFC throughout the vegetative pasture cycle in areas with and without dolomitic limestone application. Thus, four treatments (P1UC to P4TC) were constituted: P1UC-without limestone application (U) and continuous grazing (CG); P2UD-U and deferred grazing (DG); P3TD-with the application of limestone (T) and DG; P4TC-T and CG. In DG plots, the placement and removal of the animals were carried out as a function of the average height of the pasture (placement-10 cm; removal-3 to 5 cm). The PFC was characterized in winter, at the peak of spring and in late spring. The PFC data were subjected to a multilevel pattern analysis (ISA). The combination of rainfall and temperature influenced the pasture growth rates and consequently the height of the pasture at different times of the year. Therefore, with the different growth rates of the pasture throughout the year, the sheep remain for different periods of time in the deferred grazing treatments. In the four treatments, 103 plant species were identified. The most representative botanical families in the four treatments were Asteraceae, Fabaceae and Poaceae. ISA identified 14 bioindicator species: eight for the winter period, three for the late spring vegetative period and three for the TC treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA