Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Food Chem ; 450: 139342, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38631198

RESUMO

Numerous Pseudomonas species can infect aquatic animals, such as farmed rainbow trout, sea trout, sea bass, and sea bream, by causing disease or stress reactions. In aquaculture facilities, a number of Pseudomonas species have been isolated and identified as the main pathogens. The present study describes the characterization of 18 Pseudomonas strains, isolated from fish products using shotgun proteomics. The bacterial proteomes obtained were further analyzed to identify the main functional pathway proteins involved. In addition, this study revealed the presence of 1015 non-redundant peptides related to virulence factors. An additional 25 species-specific peptides were identified as putative Pseudomonas spp. biomarkers. The results constitute the largest dataset, described thus far for the rapid identification and characterization of Pseudomonas species present in edible fish; furthermore, these data can provide the basis for further research into the development of new therapies against these harmful pathogens.


Assuntos
Produtos Pesqueiros , Proteômica , Pseudomonas , Animais , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , Pseudomonas/classificação , Pseudomonas/química , Produtos Pesqueiros/análise , Produtos Pesqueiros/microbiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/análise , Doenças dos Peixes/microbiologia , Proteoma/análise , Proteoma/metabolismo , Fatores de Virulência/metabolismo , Peixes/microbiologia
2.
Food Chem ; 448: 139045, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537549

RESUMO

This article summarizes the characterization, by shotgun proteomics, of 11 bacterial strains identified as responsible for seafood spoilage. A total of 4455 peptide spectrum matches, corresponding to 4299 peptides and 3817 proteins were identified. Analyses of data determined the functional pathways they are involved in. The proteins identified were integrated into a protein-protein network that involves 371 nodes and 3016 edges. Those proteins are implicated in energy pathways, peptidoglycan biosynthesis, spermidine/putrescine metabolism. An additional 773 peptides were characterized as virulence factors, that participates in bacterial pathogenesis; while 14 peptides were defined as biomarkers, as they can be used to differentiate the bacterial species present. This report represents the most extensive proteomic repository available in the field of seafood spoilage bacteria; the data substantially advances the understanding of seafood decay, as well as provides fundamental bases for the recognition of the bacteria existent in seafood that cause spoilage during food processing/storage.


Assuntos
Bactérias , Proteínas de Bactérias , Proteômica , Alimentos Marinhos , Fatores de Virulência , Alimentos Marinhos/microbiologia , Alimentos Marinhos/análise , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Animais , Microbiologia de Alimentos
3.
J Agric Food Chem ; 72(8): 4448-4463, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38364257

RESUMO

The presence of biogenic amines (histamine, tyramine, putrescine, and cadaverine) in seafood is a significant concern for food safety. This review describes for the first time a shotgun quantitative proteomics strategy to evaluate and compare foodborne strains of bacteria that produce biogenic amines in seafoods. This approach recognized 35,621 peptide spectrum matches, belonging to 20,792 peptides, and 4621 proteins. It allowed the determination of functional pathways and the classification of the strains into hierarchical clusters. The study identified a protein-protein interaction network involving 1160 nodes/10,318 edges. Proteins were related to energy pathways, spermidine biosynthesis, and putrescine metabolism. Label-free quantitative proteomics allowed the identification of differentially regulated proteins in specific strains such as putrescine aminotransferase, arginine decarboxylase, and l-histidine-binding protein. Additionally, 123 peptides were characterized as virulence factors and 299 peptide biomarkers were selected to identify bacterial species in fish products. This study presents the most extensive proteomic repository and progress in the science of food biogenic bacteria and could be applied in the food industry for the detection of bacterial contamination that produces histamine and other biogenic amines during food processing/storage.


Assuntos
Histamina , Putrescina , Animais , Proteômica , Fatores de Virulência , Aminas Biogênicas/metabolismo , Bactérias/metabolismo , Produtos Pesqueiros , Peptídeos , Alimentos Marinhos/microbiologia
4.
ACS Appl Nano Mater ; 7(1): 498-508, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38229662

RESUMO

Foodborne allergies and illnesses represent a major global health concern. In particular, fish can trigger life-threatening food allergic reactions and poisoning effects, mainly caused by the ingestion of parvalbumin toxin. Additionally, preformed histamine in less-than-fresh fish serves as a toxicological alert. Consequently, the analytical assessment of parvalbumin and histamine levels in fish becomes a critical public health safety measure. The multiplex detection of both analytes has emerged as an important issue. The analytical detection of parvalbumin and histamine requires different assays; while the determination of parvalbumin is commonly carried out by enzyme-linked immunosorbent assay, histamine is analyzed by high-performance liquid chromatography. In this study, we present an approach for multiplexing detection and quantification of trace amounts of parvalbumin and histamine in canned fish. This is achieved through a colorimetric and surface-enhanced Raman-scattering-based competitive lateral flow assay (SERS-LFIA) employing plasmonic nanoparticles. Two distinct SERS nanotags tailored for histamine or ß-parvalbumin detection were synthesized. Initially, spherical 50 nm Au@Ag core-shell nanoparticles (Au@Ag NPs) were encoded with either rhodamine B isothiocyanate (RBITC) or malachite green isothiocyanate (MGITC). Subsequently, these nanoparticles were bioconjugated with anti-ß-parvalbumin and antihistamine, forming the basis for our detection and quantification methodology. Additionally, our approach demonstrates the use of SERS-LFIA for the sensitive and multiplexed detection of parvalbumin and histamine on a single test line, paving the way for on-site detection employing portable Raman instruments.

5.
Stem Cell Res Ther ; 14(1): 383, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129923

RESUMO

BACKGROUND: A challenging new branch of research related to aging-associated diseases is the identification of miRNAs capable of modulating the senescence-associated secretory phenotype (SASP) which characterizes senescent cells and contributes to driving inflammation. METHODS: Mesenchymal stem cells (MSC) from human umbilical cord stroma were stable modified using lentivirus transduction to inhibit miR-21-5p and shotgun proteomic analysis was performed in the MSC-derived extracellular vesicles (EV) to check the effect of miR-21 inhibition in their protein cargo. Besides, we studied the paracrine effect of those modified extracellular vesicles and also their effect on SASP. RESULTS: Syndecan-1 (SDC1) was the most decreased protein in MSC-miR21--derived EV, and it was involved in inflammation and EV production. MSC-miR21--derived EV were found to produce a statistically significant inhibitory effect on SASP and inflammaging markers expression in receptor cells, and in the opposite way, these receptor cells increased their SASP and inflammaging expression statistically significantly when treated with MSC-miR-21+-derived EV. CONCLUSION: This work demonstrates the importance of miR-21 in inflammaging and its role in SASP through SDC1.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Proteômica , MicroRNAs/genética , MicroRNAs/metabolismo , Inflamação/metabolismo , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo
6.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138956

RESUMO

Food safety is a critical aspect of public health and involves the handling, preparation, and storage of food to avoid contamination and foodborne illnesses [...].


Assuntos
Microbiologia de Alimentos , Proteômica , Proteômica/métodos , Manipulação de Alimentos/métodos , Inocuidade dos Alimentos , Perfilação da Expressão Gênica , Contaminação de Alimentos
7.
Front Nutr ; 10: 1254681, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035353

RESUMO

Seafood is highly enriched in n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs), particularly eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3), in contrast to the ultra-processed foods included in the modern Western diet that have high levels of n-6 linoleic acid (LA, 18:2 n-6), precursor for the pro-inflammatory n-6 arachidonic acid (ARA, 20:4 n-6). The capacity of marine lipids to reduce plasmatic triglycerides and blood pressure have been well-described. Moreover, recent studies have also raised evidence of a potential regulatory action of marine lipids on inflammation, the immune system, and food allergy (FA). FA is considered one of the main concerns to become life threatening in food safety. The prevalence of this emerging global problem has been increasing during the last two decades, especially in industrialized countries. About a 6-8% of young children and 2-4% of adults is estimated to be affected by FA. The main objective of the current study is to update the existing knowledge, but also the limitations, on the potential impact of marine lipids and their lipid mediators in regulating immunity, inflammation, and ultimately, food allergies. In particular, the focus is on the effect of marine lipids in modulating the key factors that control the sensitization and effector phases of FA, including gut microbiota (GM), inflammation, and immune system response. Results in animal models highlight the positive effect that consuming marine lipids, whether as a supplement or through seafood consumption, may have a relevant role in improving gut dysbiosis and inflammation, and preventing or reducing the severity of FA. However, more systematic studies in humans are needed to optimize such beneficial actions to each particular FA, age, and medical condition to reach an effective clinical application of marine lipids to improve FAs and their outcomes.

8.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175409

RESUMO

Biogenic amine-producing bacteria are responsible for the production of basic nitrogenous compounds (histamine, cadaverine, tyramine, and putrescine) following the spoilage of food due to microorganisms. In this study, we adopted a shotgun proteomics strategy to characterize 15 foodborne strains of biogenic-amine-producing bacteria. A total of 10,673 peptide spectrum matches belonging to 4081 peptides and corresponding to 1811 proteins were identified. Relevant functional pathways were determined, and strains were differentiated into hierarchical clusters. An expected protein-protein interaction network was created (260 nodes/1973 interactions). Most of the determined proteins were associated with networks/pathways of energy, putrescine metabolism, and host-virus interaction. Additionally, 556 peptides were identified as virulence factors. Moreover, 77 species-specific peptide biomarkers corresponding to 64 different proteins were proposed to identify 10 bacterial species. This represents a major proteomic dataset of biogenic-amine-producing strains. These results may also be suitable for new treatments for food intoxication and for tracking microbial sources in foodstuffs.


Assuntos
Proteômica , Putrescina , Putrescina/metabolismo , Aminas Biogênicas/metabolismo , Bactérias/metabolismo , Peptídeos/metabolismo , Alimentos Marinhos , Microbiologia de Alimentos
9.
Mar Drugs ; 21(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37103345

RESUMO

The common octopus (Octopus vulgaris) is nowadays the most demanded cephalopod species for human consumption. This species was also postulated for aquaculture diversification to supply its increasing demand in the market worldwide, which only relies on continuously declining field captures. In addition, they serve as model species for biomedical and behavioral studies. Body parts of marine species are usually removed before reaching the final consumer as by-products in order to improve preservation, reduce shipping weight, and increase product quality. These by-products have recently attracted increasing attention due to the discovery of several relevant bioactive compounds. Particularly, the common octopus ink has been described as having antimicrobial and antioxidant properties, among others. In this study, the advanced proteomics discipline was applied to generate a common octopus reference proteome to screen potential bioactive peptides from fishing discards and by-products such as ink. A shotgun proteomics approach by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using an Orbitrap Elite instrument was used to create a reference dataset from octopus ink. A total of 1432 different peptides belonging to 361 non-redundant annotated proteins were identified. The final proteome compilation was investigated by integrated in silico studies, including gene ontology (GO) term enrichment, pathways, and network studies. Different immune functioning proteins involved in the innate immune system, such as ferritin, catalase, proteasome, Cu/Zn superoxide dismutase, calreticulin, disulfide isomerase, heat shock protein, etc., were found in ink protein networks. Additionally, the potential of bioactive peptides from octopus ink was addressed. These bioactive peptides can exert beneficial health properties such as antimicrobial, antioxidant, antihypertensive, and antitumoral properties and are therefore considered lead compounds for developing pharmacological, functional foods or nutraceuticals.


Assuntos
Octopodiformes , Proteoma , Animais , Humanos , Proteoma/metabolismo , Proteômica/métodos , Octopodiformes/química , Cromatografia Líquida , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Tinta , Espectrometria de Massas em Tandem , Peptídeos/química
10.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108304

RESUMO

The common octopus is a cephalopod species subject to active fisheries, with great potential in the aquaculture and food industry, and which serves as a model species for biomedical and behavioral studies. The analysis of the skin mucus allows us to study their health in a non-invasive way, by using a hardly exploited discard of octopus in the fishing sector. A shotgun proteomics approach combined with liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using an Orbitrap-Elite instrument was used to create a reference dataset from octopus skin mucus. The final proteome compilation was investigated by integrated in-silico studies, including Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, network studies, and prediction and characterization analysis of potential bioactive peptides. This work presents the first proteomic analysis of the common octopus skin mucus proteome. This library was created by merging 5937 identified spectra of 2038 different peptides. A total of 510 non-redundant proteins were identified. Obtained results show proteins closely related to the defense, which highlight the role of skin mucus as the first barrier of defense and the interaction with the environment. Finally, the potential of the bioactive peptides with antimicrobial properties, and their possible application in biomedicine, pharmaceutical, and nutraceutical industry was addressed.


Assuntos
Octopodiformes , Proteogenômica , Animais , Proteômica/métodos , Proteoma/metabolismo , Octopodiformes/química , Octopodiformes/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Peptídeos/metabolismo , Muco/metabolismo
11.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768555

RESUMO

Food allergies (FA) have dramatically increased in recent years, particularly in developed countries. It is currently well-established that food tolerance requires the strict maintenance of a specific microbial consortium in the gastrointestinal (GI) tract microbiome as alterations in the gut microbiota can lead to dysbiosis, causing inflammation and pathogenic intestinal conditions that result in the development of FA. Although there is currently not enough knowledge to fully understand how the interactions between gut microbiota, host responses and the environment cause food allergies, recent advances in '-omics' technologies (i.e., proteomics, genomics, metabolomics) and in approaches involving systems biology suggest future headways that would finally allow the scientific understanding of the relationship between gut microbiome and FA. This review summarizes the current knowledge in the field of FA and insights into the future advances that will be achieved by applying proteomic techniques to study the GI tract microbiome in the field of FA and their medical treatment. Metaproteomics, a proteomics experimental approach of great interest in the study of GI tract microbiota, aims to analyze and identify all the proteins in complex environmental microbial communities; with shotgun proteomics, which uses liquid chromatography (LC) for separation and tandem mass spectrometry (MS/MS) for analysis, as it is the most promising technique in this field.


Assuntos
Hipersensibilidade Alimentar , Microbioma Gastrointestinal , Microbiota , Humanos , Proteômica/métodos , Espectrometria de Massas em Tandem , Microbiota/fisiologia
12.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36430310

RESUMO

Enterococcus belongs to a group of microorganisms known as lactic acid bacteria (LAB), which constitute a broad heterogeneous group of generally food-grade microorganisms historically used in food preservation. Enterococci live as commensals of the gastrointestinal tract of warm-blooded animals, although they also are present in food of animal origin (milk, cheese, fermented sausages), vegetables, and plant materials because of their ability to survive heat treatments and adverse environmental conditions. The biotechnological traits of enterococci can be applied in the food industry; however, the emergence of enterococci as a cause of nosocomial infections makes their food status uncertain. Recent advances in high-throughput sequencing allow the subtyping of bacterial pathogens, but it cannot reflect the temporal dynamics and functional activities of microbiomes or bacterial isolates. Moreover, genetic analysis is based on sequence homologies, inferring functions from databases. Here, we used an end-to-end proteomic workflow to rapidly characterize two bacteriocin-producing Enterococcus faecium (Efm) strains. The proteome analysis was performed with liquid chromatography coupled to a trapped ion mobility spectrometry-time-of-flight mass spectrometry instrument (TimsTOF) for high-throughput and high-resolution characterization of bacterial proteins. Thus, we identified almost half of the proteins predicted in the bacterial genomes (>1100 unique proteins per isolate), including quantifying proteins conferring resistance to antibiotics, heavy metals, virulence factors, and bacteriocins. The obtained proteomes were annotated according to function, resulting in 22 complete KEGG metabolic pathway modules for both strains. The workflow used here successfully characterized these bacterial isolates and showed great promise for determining and optimizing the bioengineering and biotechnology properties of other LAB strains in the food industry.


Assuntos
Bacteriocinas , Queijo , Enterococcus faecium , Animais , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Bacteriocinas/metabolismo , Proteômica , Enterococcus , Queijo/microbiologia
13.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430811

RESUMO

The microbiota present in the gastrointestinal tract is involved in the development or prevention of food allergies and autoimmune disorders; these bacteria can enter the gallbladder and, depending on the species involved, can either be benign or cause significant diseases. Occlusion of the gallbladder, usually due to the presence of calculi blocking the bile duct, facilitates microbial infection and inflammation, which can be serious enough to require life-saving surgery. In addition, the biliary salts are secreted into the intestine and can affect the gut microbiota. The interaction between the gut microbiota, pathogenic organisms, and the human immune system can create intestinal dysbiosis, generating a variety of syndromes including the development of food allergies and autoimmune disorders. The intestinal microbiota can aggravate certain food allergies, which become severe when the integrity of the intestinal barrier is affected, allowing bacteria, or their metabolites, to cross the intestinal barrier and invade the bloodstream, affecting distal body organs. This article deals with health conditions and severe diseases that are either influenced by the gut flora or caused by gallbladder obstruction and inflammation, as well as putative treatments for those illnesses.


Assuntos
Doenças Autoimunes , Hipersensibilidade Alimentar , Microbioma Gastrointestinal , Humanos , Vesícula Biliar , Intestinos/microbiologia , Inflamação
14.
Nutrients ; 14(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36297084

RESUMO

Bioactive peptides are found in foods and dietary supplements and are responsible for health benefits with applications in human and animal medicine. The health benefits include antihypertensive, antimicrobial, antithrombotic, immunomodulatory, opioid, antioxidant, anti-allergic and anti-inflammatory functions. Bioactive peptides can be obtained by microbial action, mainly by the gastrointestinal microbiota from proteins present in food, originating from either vegetable or animal matter or by the action of different gastrointestinal proteases. Proteomics can play an important role in the identification of bioactive peptides. High-resolution mass spectrometry is the principal technique used to detect and identify different types of analytes present in complex mixtures, even when available at low concentrations. Moreover, proteomics may provide the characterization of epitopes to develop new food allergy vaccines and the use of immunomodulating peptides to induce oral tolerance toward offending food allergens or even to prevent allergic sensitization. In addition, food-derived bioactive peptides have been investigated for their anti-inflammatory properties to provide safer alternatives to nonsteroidal anti-inflammatory drugs (NSAIDs). All these bioactive peptides can be a potential source of novel drugs and ingredients in food and pharmaceuticals. The following review is focused on food-derived bioactive peptides with antiallergic and anti-inflammatory properties and summarizes the new insights into the use of proteomics for their identification and quantification.


Assuntos
Antialérgicos , Anti-Infecciosos , Peptídeos , Analgésicos Opioides , Antialérgicos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Hipertensivos , Antioxidantes/farmacologia , Misturas Complexas , Suplementos Nutricionais , Epitopos , Fibrinolíticos , Hipersensibilidade Alimentar/prevenção & controle , Peptídeo Hidrolases , Peptídeos/farmacologia , Peptídeos/química , Proteômica
15.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36142880

RESUMO

Enterococcus species are Gram-positive bacteria that are normal gastrointestinal tract inhabitants that play a beneficial role in the dairy and meat industry. However, Enterococcus species are also the causative agents of health care-associated infections that can be found in dairy and fermented food products. Enterococcal infections are led by strains of Enterococcus faecalis and Enterococcus faecium, which are often resistant to antibiotics and biofilm formation. Enterococci virulence factors attach to host cells and are also involved in immune evasion. LC-MS/MS-based methods offer several advantages compared with other approaches because one can directly identify microbial peptides without the necessity of inferring conclusions based on other approaches such as genomics tools. The present study describes the use of liquid chromatography−electrospray ionization tandem mass spectrometry (LC−ESI−MS/MS) to perform a global shotgun proteomics characterization for opportunistic pathogenic Enterococcus from different dairy and fermented food products. This method allowed the identification of a total of 1403 nonredundant peptides, representing 1327 proteins. Furthermore, 310 of those peptides corresponded to proteins playing a direct role as virulence factors for Enterococcus pathogenicity. Virulence factors, antibiotic sensitivity, and proper identification of the enterococcal strain are required to propose an effective therapy. Data are available via ProteomeXchange with identifier PXD036435. Label-free quantification (LFQ) demonstrated that the majority of the high-abundance proteins corresponded to E. faecalis species. Therefore, the global proteomic repository obtained here can be the basis for further research into pathogenic Enterococcus species, thus facilitating the development of novel therapeutics.


Assuntos
Enterococcus , Alimentos Fermentados , Antibacterianos/farmacologia , Cromatografia Líquida , Farmacorresistência Bacteriana , Enterococcus faecalis , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Proteômica , Espectrometria de Massas em Tandem , Fatores de Virulência
16.
Environ Sci Technol ; 56(12): 7381-7395, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35670676

RESUMO

The spectrophotometric methodology for carbonate ion determination in seawater was first published in 2008 and has been continuously evolving in terms of reagents and formulations. Although being fast, relatively simple, affordable, and potentially easy to implement in different platforms and facilities for discrete and autonomous observations, its use is not widespread in the ocean acidification community. This study uses a merged overdetermined CO2 system data set (carbonate ion, pH, and alkalinity) obtained from 2009 to 2020 to assess the differences among the five current approaches of the methodology through an internal consistency analysis and discussing the sources of uncertainty. Overall, the results show that none of the approaches meet the climate goal (± 1 % standard uncertainty) for ocean acidification studies for the whole carbonate ion content range in this study but usually fulfill the weather goal (± 10 % standard uncertainty). The inconsistencies observed among approaches compromise the consistency of data sets among regions and through time, highlighting the need for a validated standard operating procedure for spectrophotometric carbonate ion measurements as already available for the other measurable CO2 variables.


Assuntos
Dióxido de Carbono , Água do Mar , Carbonato de Cálcio , Dióxido de Carbono/análise , Carbonatos , Concentração de Íons de Hidrogênio , Oceanos e Mares , Espectrofotometria/métodos
17.
Antibiotics (Basel) ; 11(5)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35625297

RESUMO

Phages have certain features, such as their ability to form protein-protein interactions, that make them good candidates for use in a variety of beneficial applications, such as in human or animal health, industry, food science, food safety, and agriculture. It is essential to identify and characterize the proteins produced by particular phages in order to use these viruses in a variety of functional processes, such as bacterial detection, as vehicles for drug delivery, in vaccine development, and to combat multidrug resistant bacterial infections. Furthermore, phages can also play a major role in the design of a variety of cheap and stable sensors as well as in diagnostic assays that can either specifically identify specific compounds or detect bacteria. This article reviews recently developed phage-based techniques, such as the use of recombinant tempered phages, phage display and phage amplification-based detection. It also encompasses the application of phages as capture elements, biosensors and bioreceptors, with a special emphasis on novel bacteriophage-based mass spectrometry (MS) applications.

18.
Reprod Fertil Dev ; 34(11): 776-788, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35577556

RESUMO

CONTEXT: The corpus luteum (CL) is an endocrine gland in the ovary of mature females during the oestrous cycle and pregnancy. There is evidence of a relationship between the secretory function of the CL and PPARs. AIMS: In this study, we investigated the changes in the proteome of the CL in relation to the phase of the oestrous cycle and the impact of PPARγ ligands on the proteomic profile of the CL during the mid- and late-luteal phase of the oestrous cycle. METHODS: The porcine CL explants were incubated in vitro for 6h in the presence of PPARγ ligands (agonist pioglitazone, antagonist T0070907) or without ligands. Global proteomic analysis was performed using the TMT-based LC-MS/MS method. KEY RESULTS: The obtained results showed the disparity in proteomic profile of the untreated CL - different abundance of 23 and 28 proteins for the mid- and late-luteal phase, respectively. Moreover, seven proteins were differentially regulated in the CL tissue treated with PPARγ ligands. In the mid-luteal phase, one protein, CAND1, was downregulated after treatment with T0070907. In the late-luteal phase, the proteins SPTAN1, GOLGB1, TP53BP1, MATR3, RRBP1 and SRRT were upregulated by pioglitazone. CONCLUSIONS: Comparative proteomic analysis revealed that certain proteins constitute a specific proteomic signature for each examined phase. Moreover, the study showed that the effect of PPARγ ligands on the CL proteome was rather limited. IMPLICATIONS: The results provide a broader insight into the processes that may be responsible for the structural luteolysis of the porcine CL, in addition to apoptosis and autophagy.


Assuntos
Ciclo Estral , PPAR gama , Animais , Cromatografia Líquida , Corpo Lúteo/metabolismo , Feminino , Ligantes , PPAR gama/metabolismo , Pioglitazona/análise , Pioglitazona/metabolismo , Pioglitazona/farmacologia , Gravidez , Proteoma/metabolismo , Proteômica , Suínos , Espectrometria de Massas em Tandem
19.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35457153

RESUMO

Anisakis simplex s. s. is a parasitic nematode of marine mammals and causative agent of anisakiasis in humans. The cuticle and intestine of the larvae are the tissues most responsible for direct and indirect contact, respectively, of the parasite with the host. At the L4 larval stage, tissues, such as the cuticle and intestine, are fully developed and functional, in contrast to the L3 stage. As such, this work provides for the first time the tissue-specific proteome of A. simplex s. s. larvae in the L4 stage. Statistical analysis (FC ≥ 2; p-value ≤ 0.01) showed that 107 proteins were differentially regulated (DRPs) between the cuticle and the rest of the larval body. In the comparison between the intestine and the rest of the larval body at the L4 stage, 123 proteins were identified as DRPs. Comparison of the individual tissues examined revealed a total of 272 DRPs, with 133 proteins more abundant in the cuticle and 139 proteins more abundant in the intestine. Detailed functional analysis of the identified proteins was performed using bioinformatics tools. Glycolysis and the tricarboxylic acid cycle were the most enriched metabolic pathways by cuticular and intestinal proteins, respectively, in the L4 stage of A. simplex s. s. The presence of two proteins, folliculin (FLCN) and oxoglutarate dehydrogenase (OGDH), was confirmed by Western blot, and their tertiary structure was predicted and compared with other species. In addition, host-pathogen interactions were identified, and potential new allergens were predicted. The result of this manuscript shows the largest number of protein identifications to our knowledge using proteomics tools for different tissues of L4 larvae of A. simplex s. s. The identified tissue-specific proteins could serve as targets for new drugs against anisakiasis.


Assuntos
Anisaquíase , Anisakis , Animais , Anisaquíase/parasitologia , Anisakis/química , Anisakis/metabolismo , Metabolismo dos Carboidratos , Humanos , Larva/metabolismo , Mamíferos/metabolismo , Proteoma/metabolismo
20.
Methods Mol Biol ; 2410: 673-689, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34914075

RESUMO

Food allergy is a hypersensitivity reaction to food products initiated by immunologic mechanisms, which represents one of the major concerns in food safety. New therapies for food allergies including oral and epicutaneous allergen-specific immunotherapy are required, and B cell epitope-based allergy vaccines are a good promise to improve this field. In this chapter, we describe a workflow for the design of food allergy vaccines using proteomic tools. The strategy is defined based on the characterization of B cell epitopes for a particular food allergen. For that, the workflow comprises five consecutive steps: (1) shotgun proteomics analysis of different protein isoforms for a particular food allergen, (2) downloading all protein sequences for the specific allergen included in UniProtKB database, (3) analysis by protein-based bioinformatics of B cell epitopes, (4) synthesizing of the selected B cell peptide epitopes, and (5) performing of immunoassays using sera from healthy and allergic patients. The results from this method provide a rationale repository of B cell epitopes for the design of new specific immunotherapies for a particular food allergen. The strategy was optimized for all the beta-parvalbumins (ß-PRVBs), which are considered as the main fish allergens. Using this workflow, a total of 35 peptides were identified as B cell epitopes, among them the top 4 B cell peptide epitopes that may induce protective immune response were selected as potential peptide vaccine candidates for fish allergy.


Assuntos
Hipersensibilidade Alimentar , Vacinas , Alérgenos , Animais , Dessensibilização Imunológica , Epitopos de Linfócito B , Hipersensibilidade Alimentar/prevenção & controle , Humanos , Imunoglobulina E , Peptídeos , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA