Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Immunother Cancer ; 11(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36868570

RESUMO

BACKGROUND: Loss of Ambra1 (autophagy and beclin 1 regulator 1), a multifunctional scaffold protein, promotes the formation of nevi and contributes to several phases of melanoma development. The suppressive functions of Ambra1 in melanoma are mediated by negative regulation of cell proliferation and invasion; however, evidence suggests that loss of Ambra1 may also affect the melanoma microenvironment. Here, we investigate the possible impact of Ambra1 on antitumor immunity and response to immunotherapy. METHODS: This study was performed using an Ambra1-depleted BrafV600E /Pten-/ - genetically engineered mouse (GEM) model of melanoma, as well as GEM-derived allografts of BrafV600E /Pten-/ - and BrafV600E /Pten-/ -/Cdkn2a-/ - tumors with Ambra1 knockdown. The effects of Ambra1 loss on the tumor immune microenvironment (TIME) were analyzed using NanoString technology, multiplex immunohistochemistry, and flow cytometry. Transcriptome and CIBERSORT digital cytometry analyses of murine melanoma samples and human melanoma patients (The Cancer Genome Atlas) were applied to determine the immune cell populations in null or low-expressing AMBRA1 melanoma. The contribution of Ambra1 on T-cell migration was evaluated using a cytokine array and flow cytometry. Tumor growth kinetics and overall survival analysis in BrafV600E /Pten-/ -/Cdkn2a-/ - mice with Ambra1 knockdown were evaluated prior to and after administration of a programmed cell death protein-1 (PD-1) inhibitor. RESULTS: Loss of Ambra1 was associated with altered expression of a wide range of cytokines and chemokines as well as decreased infiltration of tumors by regulatory T cells, a subpopulation of T cells with potent immune-suppressive properties. These changes in TIME composition were associated with the autophagic function of Ambra1. In the BrafV600E /Pten-/ -/Cdkn2a-/ - model inherently resistant to immune checkpoint blockade, knockdown of Ambra1 led to accelerated tumor growth and reduced overall survival, but at the same time conferred sensitivity to anti-PD-1 treatment. CONCLUSIONS: This study shows that loss of Ambra1 affects the TIME and the antitumor immune response in melanoma, highlighting new functions of Ambra1 in the regulation of melanoma biology.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Humanos , Animais , Camundongos , Autofagia , Movimento Celular , Proliferação de Células , Citocinas , Microambiente Tumoral , Proteínas Adaptadoras de Transdução de Sinal
2.
Front Immunol ; 14: 1320614, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259467

RESUMO

Murine syngeneic tumor models have been used extensively for cancer research for several decades and have been instrumental in driving the discovery and development of cancer immunotherapies. These tumor models are very simplistic cancer models, but recent reports have, however, indicated that the different inoculated cancer cell lines can lead to the formation of unique tumor microenvironments (TMEs). To gain more knowledge from studies based on syngeneic tumor models, it is essential to obtain an in-depth understanding of the cellular and molecular composition of the TME in the different models. Additionally, other parameters that are important for cancer progression, such as collagen content and mechanical tissue stiffness across syngeneic tumor models have not previously been reported. Here, we compare the TME of tumors derived from six common syngeneic tumor models. Using flow cytometry and transcriptomic analyses, we show that strikingly unique TMEs are formed by the different cancer cell lines. The differences are reflected as changes in abundance and phenotype of myeloid, lymphoid, and stromal cells in the tumors. Gene expression analyses support the different cellular composition of the TMEs and indicate that distinct immunosuppressive mechanisms are employed depending on the tumor model. Cancer-associated fibroblasts (CAFs) also acquire very different phenotypes across the tumor models. These differences include differential expression of genes encoding extracellular matrix (ECM) proteins, matrix metalloproteinases (MMPs), and immunosuppressive factors. The gene expression profiles suggest that CAFs can contribute to the formation of an immunosuppressive TME, and flow cytometry analyses show increased PD-L1 expression by CAFs in the immunogenic tumor models, MC38 and CT26. Comparison with CAF subsets identified in other studies shows that CAFs are skewed towards specific subsets depending on the model. In athymic mice lacking tumor-infiltrating cytotoxic T cells, CAFs express lower levels of PD-L1 and lower levels of fibroblast activation markers. Our data underscores that CAFs can be involved in the formation of an immunosuppressive TME.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Animais , Camundongos , Antígeno B7-H1 , Microambiente Tumoral , Proteínas da Matriz Extracelular , Imunossupressores , Camundongos Nus , Fenótipo , Neoplasias/genética
3.
Pharmaceutics ; 14(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35631632

RESUMO

YKL-40 (also named chitinase 3 like-1 protein [CHI3L1]) is a secreted chitinase-like protein which is upregulated in cancers and suggested to have pro-tumorigenic activity. YKL-40 lacks enzymatic function, but it can bind carbohydrates such as chitin. Chitooligosaccharides (COS) derived from deacetylation and hydrolysis of chitin might be used for the blockade of YKL-40 function. Here, public single-cell RNA sequencing datasets were used to elucidate the cellular source of YKL-40 gene expression in human tumors. Fibroblasts and myeloid cells were the primary sources of YKL-40. Screening of YKL-40 gene expression in syngeneic mouse cancer models showed the highest expression in the Lewis lung carcinoma (LL2) model. LL2 was used to investigate COS monotherapy and combinations with immune checkpoint inhibitors (anti-PD-L1 and anti-CTLA-4) (ICIs) and radiotherapy (8 Gy × 3) (RT). COS tended to reduce plasma YKL-40 levels, but it did not affect tumor growth. LL2 showed minimal responses to ICIs, or to RT alone. Interestingly, ICIs combined with COS led to delayed tumor growth. RT also enhanced the efficacy of ICIs; however, the addition of COS did not further delay the tumor growth. COS may exert their anti-tumorigenic effects through the inhibition of YKL-40, but additional functions of COS should be investigated.

4.
Matrix Biol Plus ; 13: 100101, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35198964

RESUMO

Increased remodeling of the extracellular matrix in malignant tumors has been shown to correlate with tumor aggressiveness and a poor prognosis. This remodeling involves degradation of the original extracellular matrix (ECM) and deposition of a new tumor-supporting ECM. The main constituent of the ECM is collagen and collagen turnover mainly occurs in a sequential manner, where initial proteolytic cleavage of the insoluble fibers is followed by cellular internalization of large well-defined collagen fragments for lysosomal degradation. However, despite extensive research in the field, a lack of consensus on which cell types within the tumor microenvironment express the involved proteases still exists. Furthermore, the relative contribution of different cell types to collagen internalization is not well-established. Here, we developed quantitative ex vivo collagen degradation assays and show that the proteases responsible for the initial collagen cleavage in two murine syngeneic tumor models are matrix metalloproteinases produced by cancer-associated fibroblasts and that collagen degradation fragments are endocytosed primarily by tumor-associated macrophages and cancer-associated fibroblasts from the tumor stroma. Using tumors from mannose receptor-deficient mice, we show that this receptor is essential for collagen-internalization by tumor-associated macrophages. Together, these findings identify the cell types responsible for the entire collagen degradation pathway, from initial cleavage to endocytosis of fragments for intracellular degradation.

5.
Oncoimmunology ; 11(1): 2026020, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35111385

RESUMO

Galectin-3 (Gal3) can be expressed by many cells in the tumor microenvironment (TME), including cancer cells, cancer-associated fibroblasts, tumor-associated macrophages, and regulatory T cells (Tregs). In addition to immunosuppression, Gal3 expression has been connected to malignant cell transformation, tumor progression, and metastasis. In the present study, we found spontaneous T-cell responses against Gal3-derived peptides in PBMCs from both healthy donors and cancer patients. We isolated and expanded these Gal3-specific T cells in vitro and showed that they could directly recognize target cells that expressed Gal3. Finally, therapeutic vaccination with a long Gal3-derived peptide epitope, which induced the expansion of Gal3-specific CD8+ T cells in vivo, showed a significant tumor-growth delay in mice inoculated with EO771.LMB metastatic mammary tumor cells. This was associated with a significantly lower percentage of both Tregs and tumor-infiltrating Gal3+ cells in the non-myeloid CD45+CD11b- compartment and with an alteration of the T-cell memory populations in the spleens of Gal3-vaccinated mice. These results suggest that by activating Gal3-specific T cells by an immune-modulatory vaccination, we can target Gal3-producing cells in the TME, and thereby induce a more immune permissive TME. This indicates that Gal3 could be a novel target for therapeutic cancer vaccines.


Assuntos
Vacinas Anticâncer , Neoplasias , Animais , Linfócitos T CD8-Positivos/metabolismo , Galectina 3/metabolismo , Humanos , Camundongos , Microambiente Tumoral , Vacinação , Vacinas de Subunidades Antigênicas
6.
Oncogene ; 41(9): 1364-1375, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35017664

RESUMO

The development of immune checkpoint inhibitors (ICI) marks an important breakthrough of cancer therapies in the past years. However, only a limited fraction of patients benefit from such treatments, prompting the search for immune modulating agents that can improve the therapeutic efficacy. The nonselective beta blocker, propranolol, which for decades has been prescribed for the treatment of cardiovascular conditions, has recently been used successfully to treat metastatic angiosarcoma. These results have led to an orphan drug designation by the European Medicines Agency for the treatment of soft tissue sarcomas. The anti-tumor effects of propranolol are suggested to involve the reduction of cancer cell proliferation as well as angiogenesis. Here, we show that oral administration of propranolol delays tumor progression of MCA205 fibrosarcoma model and MC38 colon cancer model and increases the survival rate of tumor bearing mice. Propranolol works by reducing tumor angiogenesis and facilitating an anti-tumoral microenvironment with increased T cell infiltration and reduced infiltration of myeloid-derived suppressor cells (MDSCs). Using T cell deficient mice, we demonstrate that the full anti-tumor effect of propranolol requires the presence of T cells. Flow cytometry-based analysis and RNA sequencing of FACS-sorted cells show that propranolol treatment leads to an upregulation of PD-L1 on tumor associated macrophages (TAMs) and changes in their chemokine expression profile. Lastly, we observe that the co-administration of propranolol significantly enhances the efficacy of anti-CTLA4 therapy. Our results identify propranolol as an immune modulating agent, which can improve immune checkpoint inhibitor therapies in soft tissue sarcoma patients and potentially in other cancers.


Assuntos
Antagonistas Adrenérgicos beta , Neoplasias , Microambiente Tumoral , Animais , Camundongos , Antagonistas Adrenérgicos beta/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/tratamento farmacológico , Propranolol/farmacologia
7.
Cancer Immunol Res ; 9(11): 1316-1326, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34518197

RESUMO

Expression of the L-arginine catabolizing enzyme arginase 1 (ARG1) is a central immunosuppressive mechanism mediated by tumor-educated myeloid cells. Increased activity of ARG1 promotes the formation of an immunosuppressive microenvironment and leads to a more aggressive phenotype in many cancers. Intrinsic T-cell immunity against ARG1-derived epitopes in the peripheral blood of cancer patients and healthy subjects has previously been demonstrated. To evaluate the antitumor efficacy of ARG1-derived peptide vaccines as a monotherapy and as a combinational therapy with checkpoint blockade, different in vivo syngeneic mouse tumor models were utilized. To evaluate the antitumor effects, flow cytometry analysis and IHC were performed on tumors, and ELISPOT assays were performed to characterize immune responses. We show that ARG1-targeting therapeutic vaccines were able to activate endogenous antitumor immunity in several in vivo syngeneic mouse tumor models and to modulate the cell composition of the tumor microenvironment without causing any associated side effects or systemic toxicity. ARG1-targeting vaccines in combination with anti-PD-1 also resulted in increased T-cell infiltration, decreased ARG1 expression, reduced suppressive function of tumor-educated myeloid cells, and a shift in the M1/M2 ratio of tumor-infiltrating macrophages. These results indicated that the induced shift toward a more proinflammatory microenvironment by ARG1-targeting immunotherapy favors effective tumor control when combined with anti-PD-1 checkpoint blockade. Our data illustrate the ability of ARG1-based immune modulatory vaccination to elicit antigen-specific immunosurveillance and imply the feasibility of this novel immunotherapeutic approach for clinical translation.


Assuntos
Arginase/metabolismo , Células Mieloides/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Vacinas/uso terapêutico , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Microambiente Tumoral , Vacinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nat Commun ; 12(1): 2550, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953176

RESUMO

Melanoma is the deadliest skin cancer. Despite improvements in the understanding of the molecular mechanisms underlying melanoma biology and in defining new curative strategies, the therapeutic needs for this disease have not yet been fulfilled. Herein, we provide evidence that the Activating Molecule in Beclin-1-Regulated Autophagy (Ambra1) contributes to melanoma development. Indeed, we show that Ambra1 deficiency confers accelerated tumor growth and decreased overall survival in Braf/Pten-mutated mouse models of melanoma. Also, we demonstrate that Ambra1 deletion promotes melanoma aggressiveness and metastasis by increasing cell motility/invasion and activating an EMT-like process. Moreover, we show that Ambra1 deficiency in melanoma impacts extracellular matrix remodeling and induces hyperactivation of the focal adhesion kinase 1 (FAK1) signaling, whose inhibition is able to reduce cell invasion and melanoma growth. Overall, our findings identify a function for AMBRA1 as tumor suppressor in melanoma, proposing FAK1 inhibition as a therapeutic strategy for AMBRA1 low-expressing melanoma.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Melanoma/genética , Melanoma/metabolismo , Animais , Autofagia/fisiologia , Proteína Beclina-1/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Feminino , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Melanoma/patologia , Camundongos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais , Transcriptoma
9.
Oncoimmunology ; 9(1): 1771142, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32923127

RESUMO

One way that tumors evade immune destruction is through tumor and stromal cell expression of arginine-degrading enzyme arginase-2 (ARG2). Here we describe the existence of pro-inflammatory effector T-cells that recognize ARG2 and can directly target tumor and tumor-infiltrating cells. Using a library of 34 peptides covering the entire ARG2 sequence, we examined reactivity toward these peptides in peripheral blood mononuclear cells from cancer patients and healthy individuals. Interferon-γ ELISPOT revealed frequent immune responses against several of the peptides, indicating that ARG2-specific self-reactive T-cells are natural components of the human T-cell repertoire. Based on this, the most immunogenic ARG2 protein region was further characterized. By identifying conditions in the microenvironment that induce ARG2 expression in myeloid cells, we showed that ARG2-specific CD4T-cells isolated and expanded from a peripheral pool from a prostate cancer patient could recognize target cells in an ARG2-dependent manner. In the 'cold' in vivo tumor model Lewis lung carcinoma, we found that activation of ARG2-specific T-cells by vaccination significantly inhibited tumor growth. Immune-modulatory vaccines targeting ARG2 thus are a candidate strategy for cancer immunotherapy.


Assuntos
Arginase , Vacinas , Humanos , Imunidade , Leucócitos Mononucleares , Masculino , Linfócitos T/imunologia
10.
J Immunol ; 205(5): 1461-1472, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32839214

RESUMO

Tumor-associated macrophages (TAMs) support tumor growth by suppressing the activity of tumor-infiltrating T cells. Consistently, TAMs are considered a major limitation for the efficacy of cancer immunotherapy. However, the molecular reason behind the acquisition of an immunosuppressive TAM phenotype is not fully clarified. During tumor growth, the extracellular matrix (ECM) is degraded and substituted with a tumor-specific collagen-rich ECM. The collagen density of this tumor ECM has been associated with poor patient prognosis but the reason for this is not well understood. In this study, we investigated whether the collagen density could modulate the immunosuppressive activity of TAMs. The murine macrophage cell line RAW 264.7 was three-dimensionally cultured in collagen matrices of low and high collagen densities mimicking healthy and tumor tissue, respectively. Collagen density did not affect proliferation or viability of the macrophages. However, whole-transcriptome analysis revealed a striking response to the surrounding collagen density, including the regulation of immune regulatory genes and genes encoding chemokines. These transcriptional changes were shown to be similar in murine bone marrow-derived macrophages and TAMs isolated from murine tumors. Strikingly, coculture assays with primary T cells showed that macrophages cultured in high-density collagen were less efficient at attracting cytotoxic T cells and capable of inhibiting T cell proliferation more than macrophages cultured in low-density collagen. Our study demonstrates that a high collagen density can instruct macrophages to acquire an immunosuppressive phenotype. This mechanism could reduce the efficacy of immunotherapy and explain the link between high collagen density and poor prognosis.


Assuntos
Colágeno/imunologia , Tolerância Imunológica/imunologia , Macrófagos/imunologia , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Sobrevivência Celular/imunologia , Quimiocinas/imunologia , Matriz Extracelular/imunologia , Feminino , Perfilação da Expressão Gênica/métodos , Imunoterapia/métodos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Transcrição Gênica/imunologia , Microambiente Tumoral/imunologia
11.
J Immunother Cancer ; 7(1): 68, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30867051

RESUMO

BACKGROUND: Tumor progression is accompanied by dramatic remodeling of the surrounding extracellular matrix leading to the formation of a tumor-specific ECM, which is often more collagen-rich and of increased stiffness. The altered ECM of the tumor supports cancer growth and metastasis, but it is unknown if this effect involves modulation of T cell activity. To investigate if a high-density tumor-specific ECM could influence the ability of T cells to kill cancer cells, we here studied how T cells respond to 3D culture in different collagen densities. METHODS: T cells cultured in 3D conditions surrounded by a high or low collagen density were imaged using confocal fluorescent microscopy. The effects of the different collagen densities on T cell proliferation, survival, and differentiation were examined using flow cytometry. Cancer cell proliferation in similar 3D conditions was also measured. Triple-negative breast cancer specimens were analyzed for the number of infiltrating CD8+ T cells and for the collagen density. Whole-transcriptome analyses were applied to investigate in detail the effects of collagen density on T cells. Computational analyses were used to identify transcription factors involved in the collagen density-induced gene regulation. Observed changes were confirmed by qRT-PCR analysis. RESULTS: T cell proliferation was significantly reduced in a high-density matrix compared to a low-density matrix and prolonged culture in a high-density matrix led to a higher ratio of CD4+ to CD8+ T cells. The proliferation of cancer cells was unaffected by the surrounding collagen-density. Consistently, we observed a reduction in the number of infiltrating CD8+ T-cells in mammary tumors with high collagen-density indicating that collagen-density has a role in regulating T cell abundance in human breast cancer. Whole-transcriptome analysis of 3D-cultured T cells revealed that a high-density matrix induces downregulation of cytotoxic activity markers and upregulation of regulatory T cell markers. These transcriptional changes were predicted to involve autocrine TGF-ß signaling and they were accompanied by an impaired ability of tumor-infiltrating T cells to kill autologous cancer cells. CONCLUSIONS: Our study identifies a new immune modulatory mechanism, which could be essential for suppression of T cell activity in the tumor microenvironment.


Assuntos
Colágeno/metabolismo , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Matriz Extracelular , Perfilação da Expressão Gênica , Humanos , Imunomodulação , Ativação Linfocitária/genética , Linfócitos do Interstício Tumoral/patologia , Neoplasias/patologia , Microambiente Tumoral/genética
12.
PLoS One ; 12(12): e0189102, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29240787

RESUMO

In the present work we aimed to identify targetable signaling networks in human MLL-AF9 leukemias. We show that MLL-AF9 cells critically depend on FLT3-ligand induced pathways as well as on BRD3/4 for their survival. We evaluated the in vitro and in vivo efficacy of the BRD3/4 inhibitor I-BET151 in various human MLL-AF9 (primary) models and patient samples and analyzed the transcriptome changes following treatment. To further understand the mode of action of BRD3/4 inhibition, we performed ChIP-seq experiments on the MLL-AF9 complex in THP1 cells and compared it to RNA-seq data of I-BET151 treated cells. While we could confirm a consistent and specific downregulation of key-oncogenic drivers such as MYC and BCL2, we found that the majority of I-BET151-responsive genes were not direct MLL-AF9 targets. In fact, MLL-AF9 specific targets such as the HOXA cluster, MEIS1 and other cell cycle regulators such as CDK6 were not affected by I-BET151 treatment. Furthermore, we also highlight how MLL-AF9 transformed cells are dependent on the function of non-mutated hematopoietic transcription factors and tyrosine kinases such as the FLT3-TAK1/NF-kB pathway, again impacting on BCL2 but not on the HOXA cluster. We conclude that BRD3/4 and the FLT3-TAK1/NF-kB pathways collectively control a set of targets that are critically important for the survival of human MLL-AF9 cells.


Assuntos
Sobrevivência Celular , Leucemia/patologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas de Ligação a RNA/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/metabolismo , Proteínas de Ciclo Celular , Células Cultivadas , Humanos , Recém-Nascido , Leucemia/metabolismo
13.
Exp Hematol ; 51: 36-46, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28456746

RESUMO

Recently, NOD-SCID IL2Rγ-/- (NSG) mice were implanted with human mesenchymal stromal cells (MSCs) in the presence of ceramic scaffolds or Matrigel to mimic the human bone marrow (BM) microenvironment. This approach allowed the engraftment of leukemic samples that failed to engraft in NSG mice without humanized niches and resulted in a better preservation of leukemic stem cell self-renewal properties. To further improve our humanized niche scaffold model, we genetically engineered human MSCs to secrete human interleukin-3 (IL-3) and thrombopoietin (TPO). In vitro, these IL-3- and TPO-producing MSCs were superior in expanding human cord blood (CB) CD34+ hematopoietic stem/progenitor cells. MLL-AF9-transduced CB CD34+ cells could be transformed efficiently along myeloid or lymphoid lineages on IL-3- and TPO-producing MSCs. In vivo, these genetically engineered MSCs maintained their ability to differentiate into bone, adipocytes, and other stromal components. Upon transplantation of MLL-AF9-transduced CB CD34+ cells, acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) developed in engineered scaffolds, in which a significantly higher percentage of myeloid clones was observed in the mouse compartments compared with previous models. Engraftment of primary AML, B-cell ALL, and biphenotypic acute leukemia (BAL) patient samples was also evaluated, and all patient samples could engraft efficiently; the myeloid compartment of the BAL samples was better preserved in the human cytokine scaffold model. In conclusion, we show that we can genetically engineer the ectopic human BM microenvironment in a humanized scaffold xenograft model. This approach will be useful for functional study of the importance of niche factors in normal and malignant human hematopoiesis.


Assuntos
Diferenciação Celular , Engenharia Genética , Interleucina-3 , Células-Tronco Mesenquimais/metabolismo , Nicho de Células-Tronco , Trombopoetina , Alicerces Teciduais/química , Animais , Modelos Animais de Doenças , Xenoenxertos , Humanos , Interleucina-3/biossíntese , Interleucina-3/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Transplante de Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Trombopoetina/biossíntese , Trombopoetina/genética
14.
Traffic ; 16(2): 135-47, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25409870

RESUMO

Membrane junctions or contact sites are close associations of lipid bilayers of heterologous organelles. Ist2 is an endoplasmic reticulum (ER)-resident transmembrane protein that mediates associations between the plasma membrane (PM) and the cortical ER (cER) in baker's yeast. We asked the question what structure in Ist2 bridges the up to 30 nm distance between the PM and the cER and we noted that the region spacing the transmembrane domain from the cortical sorting signal interacting with the PM is predicted to be intrinsically disordered (ID). In Ssy1, a protein that was not previously described to reside at membrane junctions, we recognized a domain organization similar to that in Ist2. We found that the localization of both Ist2 and Ssy1 at the cell periphery depends on the presence of a PM-binding domain, an ID linker region of sufficient length and a transmembrane domain that most probably resides in the ER. We show for the first time that an ID amino acid domain bridges adjacent heterologous membranes. The length and flexibility of ID domains make them uniquely eligible for spanning large distances, and we suggest that this domain structure occurs more frequently in proteins that mediate the formation of membrane contact sites.


Assuntos
Membrana Celular/metabolismo , Junções Intercelulares/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
15.
Methods Mol Biol ; 1185: 195-210, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25062630

RESUMO

With the emergence of the concept of the leukemic stem cell (LSC), assays to study them remain pivotal in understanding (leukemic) stem cell biology. Although the in vivo NOD-SCID or NSG xenotransplantation model is currently still the favored assay of choice in most cases, this system has some limitations as well such as its cost-effectiveness, duration, and lack of engraftability of cells from some acute myeloid leukemia (AML) patients. Here, we describe in vitro assays in which long-term expansion and self-renewal of LSCs isolated from AML patients can be evaluated. We have optimized lentiviral transduction procedures in order to stably express genes of interest or stably downmodulate genes using RNAi in primary AML cells, and these approaches are described in detail here. Also, we describe bone marrow stromal coculture systems in which cobblestone area-forming cell activity, self-renewal, long-term expansion, and in vitro myeloid or lymphoid transformation can be evaluated in human CD34(+) cells of fetal or adult origin that are engineered to express oncogenes. Together, these tools should allow a further molecular elucidation of derailed signal transduction in LSCs.


Assuntos
Transformação Celular Neoplásica , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/patologia , Transdução Genética , Adulto , Animais , Antígenos CD34/genética , Antígenos CD34/metabolismo , Células da Medula Óssea/patologia , Separação Celular , Técnicas de Cocultura , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/patologia , Humanos , Lentivirus/genética , Camundongos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA